Finite time singularity for the modified SQG patch equation

Abstract

It is well known that the incompressible Euler equations in two dimensions have globally regular solutions. The inviscid surface quasi-geostrophic (SQG) equation has a Biot-Savart law that is one derivative less regular than in the Euler case, and the question of global regularity for its solutions is still open. We study here the patch dynamics in the half-plane for a family of active scalars that interpolates between these two equations, via a parameter $\alpha\in[0,\frac 12]$ appearing in the kernels of their Biot-Savart laws. The values $\alpha=0$ and $\alpha=\frac 12$ correspond to the 2D Euler and SQG cases, respectively. We prove global in time regularity for the 2D Euler patch model, even if the patches initially touch the boundary of the half-plane. On the other hand, for any sufficiently small $\alpha>0$, we exhibit initial data that lead to a singularity in finite time. Thus, these results show a phase transition in the behavior of solutions to these equations and provide a rigorous foundation for classifying the 2D Euler equations as critical.

Note: To view the article, click on the URL link for the DOI number.

  • [bc] Go to document A. L. Bertozzi and P. Constantin, "Global regularity for vortex patches," Comm. Math. Phys., vol. 152, iss. 1, pp. 19-28, 1993.
    @ARTICLE{bc, mrkey = {1207667},
      number = {1},
      issn = {0010-3616},
      author = {Bertozzi, A. L. and Constantin, P.},
      mrclass = {35Q35 (76C99)},
      doi = {10.1007/BF02097055},
      journal = {Comm. Math. Phys.},
      zblnumber = {0771.76014},
      volume = {152},
      mrnumber = {1207667},
      fjournal = {Communications in Mathematical Physics},
      mrreviewer = {A. Elcrat},
      coden = {CMPHAY},
      title = {Global regularity for vortex patches},
      year = {1993},
      pages = {19--28},
      }
  • [Butt] Go to document T. F. Buttke, "The observation of singularities in the boundary of patches of constant vorticity," Physics of Fluids A: Fluid Dynamics, vol. 1, pp. 1283-1285, 1989.
    @ARTICLE{Butt, volume = {1},
      author = {Buttke, T. F.},
      title = {The observation of singularities in the boundary of patches of constant vorticity},
      pages = {1283--1285},
      year = {1989},
      journal = {Physics of Fluids A: Fluid Dynamics},
      doi = {10.1063/1.857353},
      }
  • [CV] Go to document L. A. Caffarelli and A. Vasseur, "Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation," Ann. of Math., vol. 171, iss. 3, pp. 1903-1930, 2010.
    @ARTICLE{CV, mrkey = {2680400},
      number = {3},
      issn = {0003-486X},
      author = {Caffarelli, Luis A. and Vasseur, Alexis},
      mrclass = {35Q35 (35B45 35B65 35R11 76B03 86A10)},
      doi = {10.4007/annals.2010.171.1903},
      journal = {Ann. of Math.},
      zblnumber = {1204.35063},
      volume = {171},
      mrnumber = {2680400},
      fjournal = {Annals of Mathematics. Second Series},
      mrreviewer = {Denis Serre},
      coden = {ANMAAH},
      title = {Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation},
      year = {2010},
      pages = {1903--1930},
      }
  • [CCFGL] Go to document &. Castro, D. Córdoba, C. Fefferman, F. Gancedo, and M. López-Fernández, "Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves," Ann. of Math., vol. 175, iss. 2, pp. 909-948, 2012.
    @ARTICLE{CCFGL, mrkey = {2993754},
      number = {2},
      issn = {0003-486X},
      author = {Castro, {Á}ngel and C{ó}rdoba, Diego and Fefferman, Charles and Gancedo, Francisco and L{ó}pez-Fern{á}ndez, Mar{\'ı}a},
      mrclass = {35Q35 (35A01 35B35)},
      doi = {10.4007/annals.2012.175.2.9},
      journal = {Ann. of Math.},
      zblnumber = {1267.76033},
      volume = {175},
      mrnumber = {2993754},
      fjournal = {Annals of Mathematics. Second Series},
      mrreviewer = {Nader Masmoudi},
      coden = {ANMAAH},
      title = {Rayleigh-{T}aylor breakdown for the {M}uskat problem with applications to water waves},
      year = {2012},
      pages = {909--948},
      }
  • [CCFGG] Go to document A. Castro, D. Córdoba, C. Fefferman, F. Gancedo, and J. Gómez-Serrano, "Finite time singularities for the free boundary incompressible Euler equations," Ann. of Math., vol. 178, iss. 3, pp. 1061-1134, 2013.
    @ARTICLE{CCFGG, mrkey = {3092476},
      number = {3},
      issn = {0003-486X},
      author = {Castro, Angel and C{ó}rdoba, Diego and Fefferman, Charles and Gancedo, Francisco and G{ó}mez-Serrano, Javier},
      mrclass = {35R35 (35A01 35Q31 76B03)},
      doi = {10.4007/annals.2013.178.3.6},
      journal = {Ann. of Math.},
      zblnumber = {1291.35199},
      volume = {178},
      mrnumber = {3092476},
      fjournal = {Annals of Mathematics. Second Series},
      mrreviewer = {Prabir K. Daripa},
      title = {Finite time singularities for the free boundary incompressible {E}uler equations},
      year = {2013},
      pages = {1061--1134},
      }
  • [CCCGW] Go to document D. Chae, P. Constantin, D. Córdoba, F. Gancedo, and J. Wu, "Generalized surface quasi-geostrophic equations with singular velocities," Comm. Pure Appl. Math., vol. 65, iss. 8, pp. 1037-1066, 2012.
    @ARTICLE{CCCGW, mrkey = {2928091},
      number = {8},
      issn = {0010-3640},
      author = {Chae, Dongho and Constantin, Peter and C{ó}rdoba, Diego and Gancedo, Francisco and Wu, Jiahong},
      mrclass = {35Q86 (35A01 35A02 35A09 35D30 86A04)},
      doi = {10.1002/cpa.21390},
      journal = {Comm. Pure Appl. Math.},
      zblnumber = {1244.35108},
      volume = {65},
      mrnumber = {2928091},
      fjournal = {Communications on Pure and Applied Mathematics},
      mrreviewer = {Animikh Biswas},
      coden = {CPAMA},
      title = {Generalized surface quasi-geostrophic equations with singular velocities},
      year = {2012},
      pages = {1037--1066},
      }
  • [c] Go to document J. Chemin, "Persistance de structures géométriques dans les fluides incompressibles bidimensionnels," Ann. Sci. École Norm. Sup., vol. 26, iss. 4, pp. 517-542, 1993.
    @ARTICLE{c, mrkey = {1235440},
      number = {4},
      issn = {0012-9593},
      author = {Chemin, Jean-Yves},
      mrclass = {35Q35 (76C05)},
      url = {http://www.numdam.org/item?id=ASENS_1993_4_26_4_517_0},
      journal = {Ann. Sci. École Norm. Sup.},
      zblnumber = {0779.76011},
      volume = {26},
      mrnumber = {1235440},
      fjournal = {Annales Scientifiques de l'École Normale Supérieure. Quatrième Série},
      mrreviewer = {Paolo Secchi},
      coden = {ASENAH},
      title = {Persistance de structures géométriques dans les fluides incompressibles bidimensionnels},
      year = {1993},
      pages = {517--542},
      }
  • [CHKLSY] K. Choi, T. Hou, A. Kiselev, G. Luo, V. Sverak, and Y. Yao, On the finite-time blowup of a 1D model for the 3D axisymmetric Euler equations, 2014.
    @MISC{CHKLSY,
      author = {Choi, K. and Hou, T. and Kiselev, A. and Luo, G. and Sverak, V. and Yao, Y.},
      arxiv = {1407.4776},
      title = {On the finite-time blowup of a 1{D} model for the 3{D} axisymmetric {E}uler equations},
      year = {2014},
      }
  • [CIW] Go to document P. Constantin, G. Iyer, and J. Wu, "Global regularity for a modified critical dissipative quasi-geostrophic equation," Indiana Univ. Math. J., vol. 57, iss. 6, pp. 2681-2692, 2008.
    @ARTICLE{CIW, mrkey = {2482996},
      number = {6},
      issn = {0022-2518},
      author = {Constantin, Peter and Iyer, Gautam and Wu, Jiahong},
      mrclass = {35K55 (35B65 76D03 76U05 86A05)},
      doi = {10.1512/iumj.2008.57.3629},
      journal = {Indiana Univ. Math. J.},
      zblnumber = {1159.35059},
      volume = {57},
      mrnumber = {2482996},
      fjournal = {Indiana University Mathematics Journal},
      mrreviewer = {Ezzedine Zahrouni},
      coden = {IUMJAB},
      title = {Global regularity for a modified critical dissipative quasi-geostrophic equation},
      year = {2008},
      pages = {2681--2692},
      }
  • [CMT] Go to document P. Constantin, A. J. Majda, and E. Tabak, "Formation of strong fronts in the $2$-D quasigeostrophic thermal active scalar," Nonlinearity, vol. 7, iss. 6, pp. 1495-1533, 1994.
    @ARTICLE{CMT, mrkey = {1304437},
      number = {6},
      issn = {0951-7715},
      author = {Constantin, Peter and Majda, Andrew J. and Tabak, Esteban},
      mrclass = {76U05 (35Q35 76C15 76M25 86A10)},
      url = {http://stacks.iop.org/0951-7715/7/1495},
      journal = {Nonlinearity},
      zblnumber = {0809.35057},
      volume = {7},
      mrnumber = {1304437},
      fjournal = {Nonlinearity},
      mrreviewer = {J. Thomas Beale},
      coden = {NONLE5},
      title = {Formation of strong fronts in the {$2$}-{D} quasigeostrophic thermal active scalar},
      year = {1994},
      pages = {1495--1533},
      }
  • [CoVi] Go to document P. Constantin and V. Vicol, "Nonlinear maximum principles for dissipative linear nonlocal operators and applications," Geom. Funct. Anal., vol. 22, iss. 5, pp. 1289-1321, 2012.
    @ARTICLE{CoVi, mrkey = {2989434},
      number = {5},
      issn = {1016-443X},
      author = {Constantin, Peter and Vicol, Vlad},
      mrclass = {35Q53 (35B50 35Q35 76B03)},
      doi = {10.1007/s00039-012-0172-9},
      journal = {Geom. Funct. Anal.},
      zblnumber = {1256.35078},
      volume = {22},
      mrnumber = {2989434},
      fjournal = {Geometric and Functional Analysis},
      mrreviewer = {Alessandro Arsie},
      title = {Nonlinear maximum principles for dissipative linear nonlocal operators and applications},
      year = {2012},
      pages = {1289--1321},
      }
  • [CVT] Go to document P. Constantin, A. Tarfulea, and V. Vicol, "Long time dynamics of forced critical SQG," Comm. Math. Phys., vol. 335, iss. 1, pp. 93-141, 2015.
    @ARTICLE{CVT, mrkey = {3314501},
      number = {1},
      issn = {0010-3616},
      author = {Constantin, Peter and Tarfulea, Andrei and Vicol, Vlad},
      mrclass = {35Q86 (35B41)},
      doi = {10.1007/s00220-014-2129-3},
      journal = {Comm. Math. Phys.},
      zblnumber = {1316.35238},
      volume = {335},
      mrnumber = {3314501},
      fjournal = {Communications in Mathematical Physics},
      mrreviewer = {Elisabetta Rocca},
      title = {Long time dynamics of forced critical {SQG}},
      year = {2015},
      pages = {93--141},
      }
  • [CCG] Go to document A. Córdoba, D. Córdoba, and F. Gancedo, "Interface evolution: the Hele-Shaw and Muskat problems," Ann. of Math., vol. 173, iss. 1, pp. 477-542, 2011.
    @ARTICLE{CCG, mrkey = {2753607},
      number = {1},
      issn = {0003-486X},
      author = {C{ó}rdoba, Antonio and C{ó}rdoba, Diego and Gancedo, Francisco},
      mrclass = {35R35 (35Q35 76D27 76S05 76T99)},
      doi = {10.4007/annals.2011.173.1.10},
      journal = {Ann. of Math.},
      zblnumber = {1229.35204},
      volume = {173},
      mrnumber = {2753607},
      fjournal = {Annals of Mathematics. Second Series},
      mrreviewer = {Alberto Valli},
      coden = {ANMAAH},
      title = {Interface evolution: the {H}ele-{S}haw and {M}uskat problems},
      year = {2011},
      pages = {477--542},
      }
  • [Cord1] Go to document D. Cordoba, "Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation," Ann. of Math., vol. 148, iss. 3, pp. 1135-1152, 1998.
    @ARTICLE{Cord1, mrkey = {1670077},
      number = {3},
      issn = {0003-486X},
      author = {Cordoba, Diego},
      mrclass = {76B03 (34C60 35Q35 76B99)},
      doi = {10.2307/121037},
      journal = {Ann. of Math.},
      zblnumber = {0920.35109},
      volume = {148},
      mrnumber = {1670077},
      fjournal = {Annals of Mathematics. Second Series},
      coden = {ANMAAH},
      title = {Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation},
      year = {1998},
      pages = {1135--1152},
      }
  • [CoFe] Go to document D. Cordoba and C. Fefferman, "Growth of solutions for QG and 2D Euler equations," J. Amer. Math. Soc., vol. 15, iss. 3, pp. 665-670, 2002.
    @ARTICLE{CoFe, mrkey = {1896236},
      number = {3},
      issn = {0894-0347},
      author = {Cordoba, Diego and Fefferman, Charles},
      mrclass = {76B03 (35Q35 76B99 76U05 76W05)},
      doi = {10.1090/S0894-0347-02-00394-6},
      journal = {J. Amer. Math. Soc.},
      zblnumber = {1013.76011},
      volume = {15},
      mrnumber = {1896236},
      fjournal = {Journal of the American Mathematical Society},
      mrreviewer = {Jiahong Wu},
      title = {Growth of solutions for {QG} and 2{D} {E}uler equations},
      year = {2002},
      pages = {665--670},
      }
  • [CFMR] Go to document D. Córdoba, M. A. Fontelos, A. M. Mancho, and J. L. Rodrigo, "Evidence of singularities for a family of contour dynamics equations," Proc. Natl. Acad. Sci. USA, vol. 102, iss. 17, pp. 5949-5952, 2005.
    @ARTICLE{CFMR, mrkey = {2141918},
      number = {17},
      issn = {1091-6490},
      author = {C{ó}rdoba, Diego and Fontelos, Marco A. and Mancho, Ana M. and Rodrigo, Jose L.},
      mrclass = {76B03 (35A20 35Q35)},
      doi = {10.1073/pnas.0501977102},
      journal = {Proc. Natl. Acad. Sci. USA},
      zblnumber = {1135.76315},
      volume = {102},
      mrnumber = {2141918},
      fjournal = {Proceedings of the National Academy of Sciences of the United States of America},
      coden = {PNASFB},
      title = {Evidence of singularities for a family of contour dynamics equations},
      year = {2005},
      pages = {5949--5952},
      }
  • [DKSV] Go to document M. Dabkowski, A. Kiselev, L. Silvestre, and V. Vicol, "Global well-posedness of slightly supercritical active scalar equations," Anal. PDE, vol. 7, iss. 1, pp. 43-72, 2014.
    @ARTICLE{DKSV, mrkey = {3219499},
      number = {1},
      issn = {2157-5045},
      author = {Dabkowski, Michael and Kiselev, Alexander and Silvestre, Luis and Vicol, Vlad},
      mrclass = {35Q35 (35B30 35B44)},
      doi = {10.2140/apde.2014.7.43},
      journal = {Anal. PDE},
      zblnumber = {1294.35092},
      volume = {7},
      mrnumber = {3219499},
      fjournal = {Analysis \& PDE},
      mrreviewer = {J{á}uber Cavalcante Oliveira},
      title = {Global well-posedness of slightly supercritical active scalar equations},
      year = {2014},
      pages = {43--72},
      }
  • [Den1] Go to document S. A. Denisov, "Infinite superlinear growth of the gradient for the two-dimensional Euler equation," Discrete Contin. Dyn. Syst., vol. 23, iss. 3, pp. 755-764, 2009.
    @ARTICLE{Den1, mrkey = {2461825},
      number = {3},
      issn = {1078-0947},
      author = {Denisov, Sergey A.},
      mrclass = {35Q35 (35B45 35L65 76B99 76F99)},
      doi = {10.3934/dcds.2009.23.755},
      journal = {Discrete Contin. Dyn. Syst.},
      zblnumber = {1156.76009},
      volume = {23},
      mrnumber = {2461825},
      fjournal = {Discrete and Continuous Dynamical Systems. Series A},
      mrreviewer = {Chao Cheng Huang},
      title = {Infinite superlinear growth of the gradient for the two-dimensional {E}uler equation},
      year = {2009},
      pages = {755--764},
      }
  • [Den2] Go to document S. A. Denisov, "Double exponential growth of the vorticity gradient for the two-dimensional Euler equation," Proc. Amer. Math. Soc., vol. 143, iss. 3, pp. 1199-1210, 2015.
    @ARTICLE{Den2, mrkey = {3293735},
      number = {3},
      issn = {0002-9939},
      author = {Denisov, Sergey A.},
      mrclass = {35Q31 (35B45 76B47)},
      doi = {10.1090/S0002-9939-2014-12286-6},
      journal = {Proc. Amer. Math. Soc.},
      zblnumber = {1315.35150},
      volume = {143},
      mrnumber = {3293735},
      fjournal = {Proceedings of the American Mathematical Society},
      mrreviewer = {Francesco Fanelli},
      title = {Double exponential growth of the vorticity gradient for the two-dimensional {E}uler equation},
      year = {2015},
      pages = {1199--1210},
      }
  • [d] Go to document N. Depauw, "Poche de tourbillon pour Euler 2D dans un ouvert à bord," J. Math. Pures Appl., vol. 78, iss. 3, pp. 313-351, 1999.
    @ARTICLE{d, mrkey = {1687165},
      number = {3},
      issn = {0021-7824},
      author = {Depauw, Nicolas},
      mrclass = {76B47 (35Q30 76B03)},
      doi = {10.1016/S0021-7824(98)00003-8},
      journal = {J. Math. Pures Appl.},
      zblnumber = {0927.76014},
      volume = {78},
      mrnumber = {1687165},
      fjournal = {Journal de Mathématiques Pures et Appliquées. Neuvième Série},
      mrreviewer = {Marcel Oliver},
      coden = {JMPAAM},
      title = {Poche de tourbillon pour {E}uler 2{D} dans un ouvert à bord},
      year = {1999},
      pages = {313--351},
      }
  • [DM] Go to document D. G. Dritschel and M. E. McIntyre, "Does contour dynamics go singular?," Phys. Fluids A, vol. 2, iss. 5, pp. 748-753, 1990.
    @ARTICLE{DM, mrkey = {1050012},
      number = {5},
      issn = {0899-8213},
      author = {Dritschel, D. G. and McIntyre, M. E.},
      mrclass = {76C05 (76M25)},
      doi = {10.1063/1.857728},
      journal = {Phys. Fluids A},
      volume = {2},
      mrnumber = {1050012},
      fjournal = {Physics of Fluids A. Fluid Dynamics},
      coden = {PFADEB},
      title = {Does contour dynamics go singular?},
      year = {1990},
      pages = {748--753},
      }
  • [DZ] Go to document D. G. Dritschel and N. J. Zabusky, "A new, but flawed, numerical method for vortex patch evolution in two dimensions," J. Comput. Phys., vol. 93, iss. 2, pp. 481-484, 1991.
    @ARTICLE{DZ, mrkey = {1104362},
      number = {2},
      issn = {0021-9991},
      author = {Dritschel, David G. and Zabusky, Norman J.},
      mrclass = {76M25 (76C05)},
      doi = {10.1016/0021-9991(91)90197-S},
      journal = {J. Comput. Phys.},
      zblnumber = {0726.76029},
      volume = {93},
      mrnumber = {1104362},
      fjournal = {Journal of Computational Physics},
      mrreviewer = {E. G. Broadbent},
      coden = {JCTPAH},
      title = {A new, but flawed, numerical method for vortex patch evolution in two dimensions},
      year = {1991},
      pages = {481--484},
      }
  • [d2] Go to document A. Dutrifoy, "On 3-D vortex patches in bounded domains," Comm. Partial Differential Equations, vol. 28, iss. 7-8, pp. 1237-1263, 2003.
    @ARTICLE{d2, mrkey = {1998937},
      number = {7-8},
      issn = {0360-5302},
      author = {Dutrifoy, Alexandre},
      mrclass = {76B47 (35Q35 76B03)},
      doi = {10.1081/PDE-120024362},
      journal = {Comm. Partial Differential Equations},
      zblnumber = {1030.76011},
      volume = {28},
      mrnumber = {1998937},
      fjournal = {Communications in Partial Differential Equations},
      mrreviewer = {Vladimir V. Shelukhin},
      coden = {CPDIDZ},
      title = {On 3-{D} vortex patches in bounded domains},
      year = {2003},
      pages = {1237--1263},
      }
  • [FG] Go to document R. Finn and D. Gilbarg, "Asymptotic behavior and uniquenes of plane subsonic flows," Comm. Pure Appl. Math., vol. 10, pp. 23-63, 1957.
    @ARTICLE{FG, mrkey = {0086556},
      issn = {0010-3640},
      author = {Finn, R. and Gilbarg, D.},
      mrclass = {76.0X},
      doi = {10.1002/cpa.3160100102},
      journal = {Comm. Pure Appl. Math.},
      zblnumber = {0077.18801},
      volume = {10},
      mrnumber = {0086556},
      fjournal = {Communications on Pure and Applied Mathematics},
      mrreviewer = {M. J. Lighthill},
      title = {Asymptotic behavior and uniquenes of plane subsonic flows},
      year = {1957},
      pages = {23--63},
      }
  • [g] Go to document F. Gancedo, "Existence for the $\alpha$-patch model and the QG sharp front in Sobolev spaces," Adv. Math., vol. 217, iss. 6, pp. 2569-2598, 2008.
    @ARTICLE{g, mrkey = {2397460},
      number = {6},
      issn = {0001-8708},
      author = {Gancedo, Francisco},
      mrclass = {35Q35 (76B03 76U05)},
      doi = {10.1016/j.aim.2007.10.010},
      journal = {Adv. Math.},
      zblnumber = {1148.35099},
      volume = {217},
      mrnumber = {2397460},
      fjournal = {Advances in Mathematics},
      mrreviewer = {Milton C. Lopes Filho},
      coden = {ADMTA4},
      title = {Existence for the {$\alpha$}-patch model and the {QG} sharp front in {S}obolev spaces},
      year = {2008},
      pages = {2569--2598},
      }
  • [GS] Go to document F. Gancedo and R. M. Strain, "Absence of splash singularities for surface quasi-geostrophic sharp fronts and the Muskat problem," Proc. Natl. Acad. Sci. USA, vol. 111, iss. 2, pp. 635-639, 2014.
    @ARTICLE{GS, mrkey = {3181769},
      number = {2},
      issn = {1091-6490},
      author = {Gancedo, Francisco and Strain, Robert M.},
      mrclass = {76S05 (35B35 76D27 76Txx 86A05)},
      doi = {10.1073/pnas.1320554111},
      journal = {Proc. Natl. Acad. Sci. USA},
      volume = {111},
      mrnumber = {3181769},
      fjournal = {Proceedings of the National Academy of Sciences of the United States of America},
      mrreviewer = {Jos{é} Miguel Pacheco Castelao},
      title = {Absence of splash singularities for surface quasi-geostrophic sharp fronts and the {M}uskat problem},
      year = {2014},
      pages = {635--639},
      }
  • [GT] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, New York: Springer-Verlag, 2001.
    @BOOK{GT, mrkey = {1814364},
      author = {Gilbarg, David and Trudinger, Neil S.},
      mrclass = {35-02 (35Jxx)},
      series = {Classics in Mathematics},
      address = {New York},
      isbn = {3-540-41160-7},
      publisher = {Springer-Verlag},
      zblnumber = {1042.35002},
      mrnumber = {1814364},
      title = {Elliptic Partial Differential Equations of Second Order},
      year = {2001},
      pages = {xiv+517},
      }
  • [HS] Go to document R. Hardt and L. Simon, "Boundary regularity and embedded solutions for the oriented Plateau problem," Ann. of Math., vol. 110, iss. 3, pp. 439-486, 1979.
    @ARTICLE{HS, mrkey = {0554379},
      number = {3},
      issn = {0003-486X},
      author = {Hardt, Robert and Simon, Leon},
      mrclass = {49F10 (49F20 53A10)},
      doi = {10.2307/1971233},
      journal = {Ann. of Math.},
      zblnumber = {0457.49029},
      volume = {110},
      mrnumber = {0554379},
      fjournal = {Annals of Mathematics. Second Series},
      mrreviewer = {Jo ao Lucas Marqu{ê}s Barbosa},
      coden = {ANMAAH},
      title = {Boundary regularity and embedded solutions for the oriented {P}lateau problem},
      year = {1979},
      pages = {439--486},
      }
  • [Holder] Go to document E. Hölder, "Über die unbeschränkte Fortsetzbarkeit einer stetigen ebenen Bewegung in einer unbegrenzten inkompressiblen Flüssigkeit," Math. Z., vol. 37, iss. 1, pp. 727-738, 1933.
    @ARTICLE{Holder, mrkey = {1545431},
      number = {1},
      issn = {0025-5874},
      author = {H{ö}lder, Ernst},
      mrclass = {Contributed Item},
      doi = {10.1007/BF01474611},
      journal = {Math. Z.},
      zblnumber = {0008.06902},
      volume = {37},
      mrnumber = {1545431},
      fjournal = {Mathematische Zeitschrift},
      coden = {MAZEAX},
      title = {Über die unbeschränkte {F}ortsetzbarkeit einer stetigen ebenen {B}ewegung in einer unbegrenzten inkompressiblen {F}lüssigkeit},
      year = {1933},
      pages = {727--738},
      }
  • [NJu] Go to document N. Ju, "Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space," Comm. Math. Phys., vol. 251, iss. 2, pp. 365-376, 2004.
    @ARTICLE{NJu, mrkey = {2100059},
      number = {2},
      issn = {0010-3616},
      author = {Ju, Ning},
      mrclass = {76U05 (35R10 76D03 76D05 86A10)},
      doi = {10.1007/s00220-004-1062-2},
      journal = {Comm. Math. Phys.},
      zblnumber = {1106.35061},
      volume = {251},
      mrnumber = {2100059},
      fjournal = {Communications in Mathematical Physics},
      mrreviewer = {Rapha{ë}l Danchin},
      coden = {CMPHAY},
      title = {Existence and uniqueness of the solution to the dissipative 2{D} quasi-geostrophic equations in the {S}obolev space},
      year = {2004},
      pages = {365--376},
      }
  • [Yud1] V. I. Judovivc, "The loss of smoothness of the solutions of Euler equations with time," Dinamika Splošn. Sredy, iss. Vyp. 16 Nestacionarnye Problemy Gidrodinamiki, pp. 71-78, 121, 1974.
    @ARTICLE{Yud1, mrkey = {0454419},
      number = {Vyp. 16 Nestacionarnye Problemy Gidrodinamiki},
      mrnumber = {0454419},
      author = {Judovi{\v{c}},
      V. I.},
      mrclass = {35Q99 (76.35)},
      fjournal = {Institut Gidrodinamiki Sibirskogo Otdelenija Akademii Nauk SSSR. Dinamika SplošnoĭSredy},
      title = {The loss of smoothness of the solutions of {E}uler equations with time},
      pages = {71--78, 121},
      year = {1974},
      journal = {Dinamika Splošn. Sredy},
      }
  • [KN10] Go to document A. Kiselev and F. Nazarov, "Global regularity for the critical dispersive dissipative surface quasi-geostrophic equation," Nonlinearity, vol. 23, iss. 3, pp. 549-554, 2010.
    @ARTICLE{KN10, mrkey = {2586369},
      number = {3},
      issn = {0951-7715},
      author = {Kiselev, Alexander and Nazarov, Fedor},
      mrclass = {35Q35 (35B65 76B03 76U05 86A05 86A10)},
      doi = {10.1088/0951-7715/23/3/006},
      journal = {Nonlinearity},
      zblnumber = {1185.35190},
      volume = {23},
      mrnumber = {2586369},
      fjournal = {Nonlinearity},
      mrreviewer = {Hongjie Dong},
      coden = {NONLE5},
      title = {Global regularity for the critical dispersive dissipative surface quasi-geostrophic equation},
      year = {2010},
      pages = {549--554},
      }
  • [KN] Go to document A. Kiselev and F. Nazarov, "A variation on a theme of Caffarelli and Vasseur," Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. $($POMI$)$, vol. 370, iss. Kraevye Zadachi Matematicheskoi Fiziki i Smezhnye Voprosy Teorii Funktsii. 40, pp. 58-72, 220, 2009.
    @ARTICLE{KN, mrkey = {2749211},
      number = {Kraevye Zadachi Matematicheskoi Fiziki i Smezhnye Voprosy Teorii Funktsii. 40},
      issn = {0373-2703},
      author = {Kiselev, Alexander and Nazarov, Fedor},
      mrclass = {35Q35 (35B65 35R11 76B03)},
      doi = {10.1007/s10958-010-9842-z},
      journal = {Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. $($POMI$)$},
      zblnumber = {1288.35393},
      volume = {370},
      mrnumber = {2749211},
      fjournal = {Rossiĭskaya Akademiya Nauk. Sankt-Peterburgskoe Otdelenie. MatematicheskiĭInstitut im. V. A. Steklova. Zapiski Nauchnykh Seminarov (POMI)},
      mrreviewer = {Benedetta Ferrario},
      title = {A variation on a theme of {C}affarelli and {V}asseur},
      year = {2009},
      pages = {58--72, 220},
      }
  • [KNV] Go to document A. Kiselev, F. Nazarov, and A. Volberg, "Global well-posedness for the critical 2D dissipative quasi-geostrophic equation," Invent. Math., vol. 167, iss. 3, pp. 445-453, 2007.
    @ARTICLE{KNV, mrkey = {2276260},
      number = {3},
      issn = {0020-9910},
      author = {Kiselev, Alexander and Nazarov, Fedor and Volberg, A.},
      mrclass = {35Q35 (35B30 35K50)},
      doi = {10.1007/s00222-006-0020-3},
      journal = {Invent. Math.},
      zblnumber = {1121.35115},
      volume = {167},
      mrnumber = {2276260},
      fjournal = {Inventiones Mathematicae},
      mrreviewer = {Xiaoming Wang},
      coden = {INVMBH},
      title = {Global well-posedness for the critical 2{D} dissipative quasi-geostrophic equation},
      year = {2007},
      pages = {445--453},
      }
  • [KS] Go to document A. Kiselev and V. vSverák, "Small scale creation for solutions of the incompressible two-dimensional Euler equation," Ann. of Math., vol. 180, iss. 3, pp. 1205-1220, 2014.
    @ARTICLE{KS, mrkey = {3245016},
      number = {3},
      issn = {0003-486X},
      author = {Kiselev, Alexander and {Š}ver{á}k, Vladimir},
      mrclass = {35Q31 (35B45 76B03)},
      doi = {10.4007/annals.2014.180.3.9},
      journal = {Ann. of Math.},
      zblnumber = {1304.35521},
      volume = {180},
      mrnumber = {3245016},
      fjournal = {Annals of Mathematics. Second Series},
      mrreviewer = {Paolo Secchi},
      title = {Small scale creation for solutions of the incompressible two-dimensional {E}uler equation},
      year = {2014},
      pages = {1205--1220},
      }
  • [KYZ1] A. Kiselev, Y. Yao, and A. Zlatovs, Local regularity for the modified SQG patch equation.
    @MISC{KYZ1,
      author = {Kiselev, Alexander and Yao, Y. and Zlato{š},
      A.},
      note = {preprint},
      title = {Local regularity for the modified {SQG} patch equation},
      arxiv = {1508.07611},
     }
  • [LuoHou2] Go to document G. Luo and T. Y. Hou, "Potentially singular solutions of the 3D axisymmetric Euler equations," Proc. Nat. Acad. Sci. USA, vol. 111, pp. 12968-12973, 2014.
    @ARTICLE{LuoHou2, volume = {111},
      author = {Luo, Guo and Hou, Thomas Y.},
      journal = {Proc. Nat. Acad. Sci. USA},
      title = {Potentially singular solutions of the {3D} axisymmetric {E}uler equations},
      pages = {12968--12973},
      year = {2014},
      doi = {10.1073/pnas.1405238111},
      }
  • [LuoHou] Go to document G. Luo and T. Y. Hou, "Toward the finite-time blowup of the 3D axisymmetric Euler equations: a numerical investigation," Multiscale Model. Simul., vol. 12, iss. 4, pp. 1722-1776, 2014.
    @ARTICLE{LuoHou, mrkey = {3278833},
      number = {4},
      issn = {1540-3459},
      author = {Luo, Guo and Hou, Thomas Y.},
      mrclass = {35Q31 (35B44 65M20 65M60 76B03)},
      doi = {10.1137/140966411},
      journal = {Multiscale Model. Simul.},
      zblnumber = {1316.35235},
      volume = {12},
      mrnumber = {3278833},
      fjournal = {Multiscale Modeling \& Simulation. A SIAM Interdisciplinary Journal},
      title = {Toward the finite-time blowup of the 3{D} axisymmetric {E}uler equations: a numerical investigation},
      year = {2014},
      pages = {1722--1776},
      }
  • [Majda] Go to document A. Majda, "Vorticity and the mathematical theory of incompressible fluid flow," Comm. Pure Appl. Math., vol. 39, iss. S, suppl., p. s187-s220, 1986.
    @ARTICLE{Majda, mrkey = {0861488},
      number = {S, suppl.},
      issn = {0010-3640},
      author = {Majda, Andrew},
      mrclass = {76D05 (35K55 76C05)},
      doi = {10.1002/cpa.3160390711},
      journal = {Comm. Pure Appl. Math.},
      zblnumber = {0595.76021},
      volume = {39},
      mrnumber = {0861488},
      fjournal = {Communications on Pure and Applied Mathematics},
      mrreviewer = {Yusuke Kato},
      coden = {CPAMA},
      title = {Vorticity and the mathematical theory of incompressible fluid flow},
      year = {1986},
      pages = {S187--S220},
      }
  • [mb] Go to document A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge: Cambridge Univ. Press, 2001, vol. 27.
    @BOOK{mb, mrkey = {1867882},
      author = {Majda, Andrew J. and Bertozzi, Andrea L.},
      mrclass = {76-02 (35Q30 35Q35 76B03 76D03 76D05)},
      series = {Cambridge Texts Appl. Math.},
      isbn = {0-521-63057-6; 0-521-63948-4},
      address = {Cambridge},
      publisher = {Cambridge Univ. Press},
      zblnumber = {0983.76001},
      volume = {27},
      mrnumber = {1867882},
      mrreviewer = {Yuxi Zheng},
      title = {Vorticity and Incompressible Flow},
      year = {2001},
      pages = {xii+545},
      doi = {10.1017/CBO9780511613203},
      }
  • [Mancho] Go to document A. M. Mancho, "Numerical studies on the self-similar collapse of the $\alpha$-patches problem," Commun. Nonlinear Sci. Numer. Simul., vol. 26, iss. 1-3, pp. 152-166, 2015.
    @ARTICLE{Mancho, mrkey = {3332042},
      number = {1-3},
      issn = {1007-5704},
      author = {Mancho, Ana M.},
      mrclass = {35Q35 (76B03)},
      doi = {10.1016/j.cnsns.2015.02.009},
      journal = {Commun. Nonlinear Sci. Numer. Simul.},
      volume = {26},
      mrnumber = {3332042},
      fjournal = {Communications in Nonlinear Science and Numerical Simulation},
      title = {Numerical studies on the self-similar collapse of the {$\alpha$}-patches problem},
      year = {2015},
      pages = {152--166},
      }
  • [MP] Go to document C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, New York: Springer-Verlag, 1994, vol. 96.
    @BOOK{MP, mrkey = {1245492},
      author = {Marchioro, Carlo and Pulvirenti, Mario},
      mrclass = {76-02 (35Q35 76Cxx 76E99 76F99 76M25)},
      series = {Appl. Math. Sci.},
      address = {New York},
      isbn = {0-387-94044-8},
      publisher = {Springer-Verlag},
      doi = {10.1007/978-1-4612-4284-0},
      zblnumber = {0789.76002},
      volume = {96},
      mrnumber = {1245492},
      mrreviewer = {J. Thomas Beale},
      title = {Mathematical Theory of Incompressible Nonviscous Fluids},
      year = {1994},
      pages = {xii+283},
      }
  • [Nad] Go to document N. S. Nadirashvili, "Wandering solutions of the two-dimensional Euler equation," Funktsional. Anal. i Prilozhen., vol. 25, iss. 3, pp. 70-71, 1991.
    @ARTICLE{Nad, mrkey = {1139875},
      number = {3},
      issn = {0374-1990},
      author = {Nadirashvili, N. S.},
      mrclass = {35Q30},
      doi = {10.1007/BF01085491},
      journal = {Funktsional. Anal. i Prilozhen.},
      volume = {25},
      mrnumber = {1139875},
      fjournal = {Akademiya Nauk SSSR. Funktsional\cprime nyĭAnaliz i ego Prilozheniya},
      title = {Wandering solutions of the two-dimensional {E}uler equation},
      year = {1991},
      pages = {70--71},
      zblnumber = {0769.35048},
      }
  • [Ped] Go to document J. Pedlosky, Geophysical Fluid Dynamics, New York: Springer-Verlag, 1987.
    @BOOK{Ped, zblnumber = {0713.76005},
      author = {Pedlosky, J.},
      title = {Geophysical Fluid Dynamics},
      address = {New York},
      publisher = {Springer-Verlag},
      year = {1987},
      doi = {10.1007/978-1-4612-4650-3},
      }
  • [PHS] R. T. Pierrehumbert, I. M. Held, and K. L. Swanson, "Spectra of local and nonlocal two-dimensional turbulence," Chaos, Solitons Fractals, vol. 4, pp. 1111-1116, 1994.
    @ARTICLE{PHS, zblnumber = {0823.76034},
      volume = {4},
      author = {Pierrehumbert, R. T. and Held, I. M. and Swanson, K. L.},
      title = {Spectra of local and nonlocal two-dimensional turbulence},
      pages = {1111--1116},
      year = {1994},
      journal = {Chaos, Solitons Fractals},
      }
  • [Pulli] D. I. Pullin, "Contour dynamics methods," in Annual Review of Fluid Mechanics, Vol. 24, Palo Alto, CA: Annual Reviews, 1992, pp. 89-115.
    @INCOLLECTION{Pulli, mrkey = {1145007},
      author = {Pullin, D. I.},
      mrclass = {76M25 (76C05 76D99 76U05)},
      address = {Palo Alto, CA},
      publisher = {Annual Reviews},
      zblnumber = {0743.76021},
      mrnumber = {1145007},
      booktitle = {Annual Review of Fluid Mechanics, {V}ol. 24},
      title = {Contour dynamics methods},
      pages = {89--115},
      year = {1992},
      }
  • [Resnick] Go to document S. G. Resnick, Dynamical Problems in Non-linear Advective Partial Differential Equations, Ann Arbor, MI: ProQuest LLC, 1995.
    @BOOK{Resnick, mrkey = {2716577},
      author = {Resnick, Serge G.},
      mrclass = {Thesis},
      url = {http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:9542767},
      address = {Ann Arbor, MI},
      publisher = {ProQuest LLC},
      mrnumber = {2716577},
      note = {Thesis (Ph.D.), The University of Chicago},
      title = {Dynamical Problems in Non-linear Advective Partial Differential Equations},
      year = {1995},
      pages = {76},
      }
  • [Rodrigo] Go to document J. L. Rodrigo, "On the evolution of sharp fronts for the quasi-geostrophic equation," Comm. Pure Appl. Math., vol. 58, iss. 6, pp. 821-866, 2005.
    @ARTICLE{Rodrigo, mrkey = {2142632},
      number = {6},
      issn = {0010-3640},
      author = {Rodrigo, Jos{é} Luis},
      mrclass = {35Q35 (35B10 76B03 76B47 76U05)},
      doi = {10.1002/cpa.20059},
      journal = {Comm. Pure Appl. Math.},
      zblnumber = {1073.35006},
      volume = {58},
      mrnumber = {2142632},
      fjournal = {Communications on Pure and Applied Mathematics},
      mrreviewer = {Drago{\c{s}} Iftimie},
      coden = {CPAMA},
      title = {On the evolution of sharp fronts for the quasi-geostrophic equation},
      year = {2005},
      pages = {821--866},
      }
  • [Smith] Go to document K. S. Smith, G. Boccaletti, C. C. Henning, I. Marinov, C. Y. Tam, I. M. Held, and G. K. Vallis, "Turbulent diffusion in the geostrophic inverse cascade," J. Fluid Mech., vol. 469, pp. 13-48, 2002.
    @ARTICLE{Smith, mrkey = {1932826},
      issn = {0022-1120},
      author = {Smith, K. S. and Boccaletti, G. and Henning, C. C. and Marinov, I. and Tam, C. Y. and Held, I. M. and Vallis, G. K.},
      mrclass = {76F25 (86A10)},
      doi = {10.1017/S0022112002001763},
      journal = {J. Fluid Mech.},
      zblnumber = {1152.76402},
      volume = {469},
      mrnumber = {1932826},
      fjournal = {Journal of Fluid Mechanics},
      coden = {JFLSA7},
      title = {Turbulent diffusion in the geostrophic inverse cascade},
      year = {2002},
      pages = {13--48},
      }
  • [stein] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton, N.J.: Princeton Univ. Press, 1970, vol. 30.
    @BOOK{stein, mrkey = {0290095},
      author = {Stein, Elias M.},
      mrclass = {46.38 (26.00)},
      series = {Princeton Math. Ser.},
      address = {Princeton, N.J.},
      publisher = {Princeton Univ. Press},
      zblnumber = {0207.13501},
      volume = {30},
      mrnumber = {0290095},
      mrreviewer = {R. E. Edwards},
      title = {Singular Integrals and Differentiability Properties of Functions},
      year = {1970},
      pages = {xiv+290},
      }
  • [Wolibner] Go to document W. Wolibner, "Un theorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long," Math. Z., vol. 37, iss. 1, pp. 698-726, 1933.
    @ARTICLE{Wolibner, mrkey = {1545430},
      number = {1},
      issn = {0025-5874},
      author = {Wolibner, W.},
      mrclass = {Contributed Item},
      doi = {10.1007/BF01474610},
      journal = {Math. Z.},
      zblnumber = {0008.06901},
      volume = {37},
      mrnumber = {1545430},
      fjournal = {Mathematische Zeitschrift},
      coden = {MAZEAX},
      title = {Un theorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long},
      year = {1933},
      pages = {698--726},
      }
  • [Wu1] Go to document S. Wu, "Almost global wellposedness of the 2-D full water wave problem," Invent. Math., vol. 177, iss. 1, pp. 45-135, 2009.
    @ARTICLE{Wu1, mrkey = {2507638},
      number = {1},
      issn = {0020-9910},
      author = {Wu, Sijue},
      mrclass = {35Q35 (35B30 76B15)},
      doi = {10.1007/s00222-009-0176-8},
      journal = {Invent. Math.},
      zblnumber = {1181.35205},
      volume = {177},
      mrnumber = {2507638},
      fjournal = {Inventiones Mathematicae},
      mrreviewer = {Beno\^ ıt P. Desjardins},
      coden = {INVMBH},
      title = {Almost global wellposedness of the 2-{D} full water wave problem},
      year = {2009},
      pages = {45--135},
      }
  • [Wu2] Go to document S. Wu, "Global wellposedness of the 3-D full water wave problem," Invent. Math., vol. 184, iss. 1, pp. 125-220, 2011.
    @ARTICLE{Wu2, mrkey = {2782254},
      number = {1},
      issn = {0020-9910},
      author = {Wu, Sijue},
      mrclass = {35Q35 (35A09 35B30 35R37 76B03 76B15)},
      doi = {10.1007/s00222-010-0288-1},
      journal = {Invent. Math.},
      zblnumber = {1221.35304},
      volume = {184},
      mrnumber = {2782254},
      fjournal = {Inventiones Mathematicae},
      mrreviewer = {John Albert},
      coden = {INVMBH},
      title = {Global wellposedness of the 3-{D} full water wave problem},
      year = {2011},
      pages = {125--220},
      }
  • [Yud2] Go to document V. I. Judovivc, "On the loss of smoothness of the solutions of the Euler equations and the inherent instability of flows of an ideal fluid," Chaos, vol. 10, iss. 3, pp. 705-719, 2000.
    @ARTICLE{Yud2, mrkey = {1791984},
      number = {3},
      issn = {1054-1500},
      author = {Judovi{\v{c}},
      V. I.},
      mrclass = {76B03 (35Q35 37N10 76E99)},
      doi = {10.1063/1.1287066},
      journal = {Chaos},
      zblnumber = {0982.76014},
      volume = {10},
      mrnumber = {1791984},
      fjournal = {Chaos. An Interdisciplinary Journal of Nonlinear Science},
      coden = {CHAOEH},
      title = {On the loss of smoothness of the solutions of the {E}uler equations and the inherent instability of flows of an ideal fluid},
      year = {2000},
      pages = {705--719},
      }
  • [Yudth] Go to document V. I. Judovivc, "Non-stationary flows of an ideal incompressible fluid," \u Z. Vyčisl. Mat. i Mat. Fiz., vol. 3, pp. 1032-1066, 1963.
    @ARTICLE{Yudth, mrkey = {0158189},
      issn = {0044-4669},
      author = {Judovi{\v{c}},
      V. I.},
      mrclass = {35.79},
      journal = {\u Z. Vyčisl. Mat. i Mat. Fiz.},
      volume = {3},
      mrnumber = {0158189},
      fjournal = {Akademija Nauk SSSR. Žurnal Vyčislitel\cprime noĭMatematiki i MatematičeskoĭFiziki},
      mrreviewer = {P. C. Fife},
      title = {Non-stationary flows of an ideal incompressible fluid},
      year = {1963},
      pages = {1032--1066},
      doi = {10.1016/0041-5553(63)90247-7},
      }
  • [ZlaEuler] Go to document A. Zlatovs, "Exponential growth of the vorticity gradient for the Euler equation on the torus," Adv. Math., vol. 268, pp. 396-403, 2015.
    @ARTICLE{ZlaEuler, mrkey = {3276599},
      issn = {0001-8708},
      author = {Zlato{š},
      Andrej},
      mrclass = {35Q31 (58J99)},
      doi = {10.1016/j.aim.2014.08.012},
      journal = {Adv. Math.},
      zblnumber = {1308.35194},
      volume = {268},
      mrnumber = {3276599},
      fjournal = {Advances in Mathematics},
      mrreviewer = {Michele Coti Zelati},
      title = {Exponential growth of the vorticity gradient for the {E}uler equation on the torus},
      year = {2015},
      pages = {396--403},
      }

Authors

Alexander Kiselev

Rice University, Houston, TX

Lenya Ryzhik

Stanford University, Stanford, CA

Yao Yao

Georgia Institute of Technology, Atlanta, GA

Andrej Zlato{š}

University of Wisconsin, Madison, WI

Current address:

University of California San Diego, La Jolla, CA