Regularity of area minimizing currents II: center manifold

Abstract

This is the second paper of a series of three on the regularity of higher codimension area minimizing integral currents. Here we perform the second main step in the analysis of the singularities, namely, the construction of a center manifold, i.e., an approximate average of the sheets of an almost flat area minimizing current. Such a center manifold is accompanied by a Lipschitz multivalued map on its normal bundle, which approximates the current with a high degree of accuracy. In the third and final paper these objects are used to conclude the proof of Almgren’s celebrated dimension bound on the singular set.

  • [Alm3] Go to document F. J. Almgren Jr., "Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure," Ann. of Math., vol. 87, pp. 321-391, 1968.
    @article{Alm3, mrkey = {0225243},
      author = {Almgren, Jr., F. J.},
      title = {Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure},
      journal = {Ann. of Math.},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {87},
      year = {1968},
      pages = {321--391},
      issn = {0003-486X},
      mrclass = {53.04 (49.00)},
      mrnumber = {0225243},
      mrreviewer = {E. Baiada},
      doi = {10.2307/1970587},
      zblnumber = {0162.24703},
      }
  • [Alm] F. J. Almgren Jr., Almgren’s Big Regularity Paper, River Edge, NJ: World Scientific Publishing Co. Inc., 2000, vol. 1.
    @book{Alm,
      author = {Almgren, Jr., F. J.},
      title = {Almgren's Big Regularity Paper},
      series = {Sci. Monogr. Ser. Math.},
      publisher = {World Scientific Publishing Co. Inc.},
      address = {River Edge, NJ},
      year = {2000},
      volume = {1},
      mrnumber = {1777737},
      zblnumber = {0985.49001},
      }
  • [DS-cm] Go to document C. De Lellis and E. Spadaro, "Center manifold: A case study," Discrete Contin. Dyn. Syst., vol. 31, iss. 4, pp. 1249-1272, 2011.
    @article{DS-cm, mrkey = {2836351},
      author = {De Lellis, Camillo and Spadaro, Emanuele},
      title = {Center manifold: A case study},
      journal = {Discrete Contin. Dyn. Syst.},
      fjournal = {Discrete and Continuous Dynamical Systems. Series A},
      volume = {31},
      year = {2011},
      number = {4},
      pages = {1249--1272},
      issn = {1078-0947},
      mrclass = {49Q15 (35B65)},
      mrnumber = {2836351},
      doi = {10.3934/dcds.2011.31.1249},
      zblnumber = {1238.49060},
      }
  • [DS1] Go to document C. De Lellis and E. Spadaro, "$Q$-valued functions revisited," Mem. Amer. Math. Soc., vol. 211, iss. 991, p. vi, 2011.
    @article{DS1, mrkey = {2663735},
      author = {De Lellis, Camillo and Spadaro, Emanuele},
      title = {{$Q$}-valued functions revisited},
      journal = {Mem. Amer. Math. Soc.},
      fjournal = {Memoirs of the American Mathematical Society},
      volume = {211},
      year = {2011},
      number = {991},
      pages = {vi+79},
      issn = {0065-9266},
      coden = {MAMCAU},
      isbn = {978-0-8218-4914-9},
      mrclass = {49Q20 (35J50)},
      mrnumber = {2663735},
      mrreviewer = {Michele Miranda},
      doi = {10.1090/S0065-9266-10-00607-1},
      zblnumber = {1246.49001},
      }
  • [DS3] Go to document C. De Lellis and E. Spadaro, "Regularity of area minimizing currents I: gradient $L^p$ estimates," Geom. Funct. Anal., vol. 24, iss. 6, pp. 1831-1884, 2014.
    @article{DS3, mrkey = {3283929},
      author = {De Lellis, Camillo and Spadaro, Emanuele},
      title = {Regularity of area minimizing currents {I}: gradient {$L\sp p$} estimates},
      journal = {Geom. Funct. Anal.},
      fjournal = {Geometric and Functional Analysis},
      volume = {24},
      year = {2014},
      number = {6},
      pages = {1831--1884},
      issn = {1016-443X},
      mrclass = {49Q15 (49N60 49Q05)},
      mrnumber = {3283929},
      mrreviewer = {S{\l}awomir Kolasi{ń}ski},
      doi = {10.1007/s00039-014-0306-3},
      zblnumber = {1307.49043},
      }
  • [DS2] Go to document C. De Lellis and E. Spadaro, "Multiple valued functions and integral currents," Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), vol. XIV, pp. 1239-1269, 2015.
    @article{DS2,
      author = {De Lellis, Camillo and Spadaro, Emanuele},
      title = {Multiple valued functions and integral currents},
      journal = {Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)},
      volume={XIV},
      year={2015},
      pages={1239--1269},
      doi = {10.2422/2036-2145.201306_002},
      }
  • [DS5] Go to document C. De Lellis and E. Spadaro, "Regularity of area-minimizing currents III: blow-up," Ann. of Math., vol. 183, pp. 577-617, 2016.
    @article{DS5,
      author = {De Lellis, Camillo and Spadaro, Emanuele},
      title = {Regularity of area-minimizing currents {III}: blow-up},
      journal = {Ann. of Math.},
      volume = {183},
      year = {2016},
      pages = {577--617},
      doi={10.4007/annals.2016/183.2.3},
      }
  • [Fed] H. Federer, Geometric Measure Theory, New York: Springer-Verlag, 1969, vol. 153.
    @book{Fed, mrkey = {0257325},
      author = {Federer, Herbert},
      title = {Geometric Measure Theory},
      series = {Grundlehren math. Wissen.},
      volume = {153},
      publisher = {Springer-Verlag},
      year = {1969},
      pages = {xiv+676},
      mrclass = {28.80 (26.00)},
      mrnumber = {0257325},
      mrreviewer = {J. E. Brothers},
      address = {New York},
      zblnumber = {0176.00801},
      }
  • [Nir] Go to document L. Nirenberg, "An extended interpolation inequality," Ann. Scuola Norm. Sup. Pisa, vol. 20, pp. 733-737, 1966.
    @article{Nir, mrkey = {0208360},
      author = {Nirenberg, L.},
      title = {An extended interpolation inequality},
      journal = {Ann. Scuola Norm. Sup. Pisa},
      volume = {20},
      year = {1966},
      pages = {733--737},
      mrclass = {46.38},
      mrnumber = {0208360},
      mrreviewer = {R. Beals},
      zblnumber = {0163.29905},
      url = {http://www.numdam.org/item?id=ASNSP_1966_3_20_4_733_0},
      }
  • [Ri04] Go to document T. Rivière, "A lower-epiperimetric inequality for area-minimizing surfaces," Comm. Pure Appl. Math., vol. 57, iss. 12, pp. 1673-1685, 2004.
    @article{Ri04, mrkey = {2082243},
      author = {Rivi{è}re, Tristan},
      title = {A lower-epiperimetric inequality for area-minimizing surfaces},
      journal = {Comm. Pure Appl. Math.},
      fjournal = {Communications on Pure and Applied Mathematics},
      volume = {57},
      year = {2004},
      number = {12},
      pages = {1673--1685},
      issn = {0010-3640},
      coden = {CPAMA},
      mrclass = {49Q05 (58E12)},
      mrnumber = {2082243},
      mrreviewer = {Denise M. Halverson},
      doi = {10.1002/cpa.20047},
      zblnumber = {1070.49024},
      }
  • [SS] Go to document R. Schoen and L. Simon, "A new proof of the regularity theorem for rectifiable currents which minimize parametric elliptic functionals," Indiana Univ. Math. J., vol. 31, iss. 3, pp. 415-434, 1982.
    @article{SS, mrkey = {0652826},
      author = {Schoen, Richard and Simon, Leon},
      title = {A new proof of the regularity theorem for rectifiable currents which minimize parametric elliptic functionals},
      journal = {Indiana Univ. Math. J.},
      fjournal = {Indiana University Mathematics Journal},
      volume = {31},
      year = {1982},
      number = {3},
      pages = {415--434},
      issn = {0022-2518},
      coden = {IUMJAB},
      mrclass = {49F20 (35J99 53C65)},
      mrnumber = {0652826},
      doi = {10.1512/iumj.1982.31.31035},
      zblnumber = {0516.49026},
      }
  • [Sim] L. Simon, Lectures on Geometric Measure Theory, Canberra: Australian National University, Centre for Mathematical Analysis, 1983, vol. 3.
    @book{Sim, mrkey = {0756417},
      author = {Simon, Leon},
      title = {Lectures on Geometric Measure Theory},
      series = {Proc. Centre for Math. Anal., Australian National Univ.},
      volume = {3},
      publisher = {Australian National University, Centre for Mathematical Analysis},
      address = {Canberra},
      year = {1983},
      pages = {vii+272},
      isbn = {0-86784-429-9},
      mrclass = {49-01 (28A75 49F20)},
      mrnumber = {0756417},
      mrreviewer = {J. S. Joel},
      zblnumber = {0546.49019},
      }
  • [SW] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton, N.J.: Princeton Univ. Press, 1971, vol. 32.
    @book{SW, mrkey = {0304972},
      author = {Stein, Elias M. and Weiss, Guido},
      title = {Introduction to {F}ourier Analysis on {E}uclidean Spaces},
      series = {Princeton Math. Ser.},
      volume = {32},
      publisher = {Princeton Univ. Press},
      address = {Princeton, N.J.},
      year = {1971},
      pages = {x+297},
      mrclass = {42A92 (31B99 32A99 46F99 47G05)},
      mrnumber = {0304972},
      mrreviewer = {Edwin Hewitt},
      zblnumber = {0232.42007},
      }

Authors

Camillo De Lellis

Mathematik Institut der Universität Zürich, Switzerland

Emanuele Spadaro

Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, Germany