Almost contact 5-manifolds are contact

Abstract

The existence of a contact structure is proved in any homotopy class of almost contact structures on a closed $5$-dimensional manifold.

Note: To view the article, click on the URL link for the DOI number.

  • [AM] Go to document S. Akbulut and R. Matveyev, "A convex decomposition theorem for $4$-manifolds," Internat. Math. Res. Notices, vol. 1998, iss. 7, p. no. 7, 371-381.
    @article{AM, mrkey = {1623402},
      author = {Akbulut, S. and Matveyev, R.},
      title = {A convex decomposition theorem for {$4$}-manifolds},
      journal = {Internat. Math. Res. Notices},
      fjournal = {International Mathematics Research Notices},
      volume = {1998},
      SORTYEAR = {1998},
      number = {7},
      pages = {no.~7, 371--381},
      issn = {1073-7928},
      mrclass = {57R15 (57N13)},
      mrnumber = {1623402},
      mrreviewer = {John B. Etnyre},
      doi = {10.1155/S1073792898000245},
      zblnumber = {0911.57025},
      }
  • [Ar] Go to document V. I. Arnolcprimed, Mathematical Methods of Classical Mechanics, Second ed., New York: Springer-Verlag, 1989, vol. 60.
    @book{Ar, mrkey = {0997295},
      author = {Arnol{\cprime}d, V. I.},
      title = {Mathematical Methods of Classical Mechanics},
      series = {Grad. Texts in Math.},
      volume = {60},
      edition = {Second},
      publisher = {Springer-Verlag},
      year = {1989},
      pages = {xvi+508},
      isbn = {0-387-96890-3},
      mrclass = {58Fxx (70-02 70H05)},
      mrnumber = {0997295},
      doi = {10.1007/978-1-4757-2063-1},
      address = {New York},
      }
  • [Ba] Go to document D. Barden, "Simply connected five-manifolds," Ann. of Math., vol. 82, pp. 365-385, 1965.
    @article{Ba, mrkey = {0184241},
      author = {Barden, D.},
      title = {Simply connected five-manifolds},
      journal = {Ann. of Math.},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {82},
      year = {1965},
      pages = {365--385},
      issn = {0003-486X},
      mrclass = {57.10},
      mrnumber = {0184241},
      mrreviewer = {S. Smale},
      doi = {10.2307/1970702},
      zblnumber = {0136.20602},
      }
  • [BEM] M. S. Borman, Y. Eliashberg, and E. Murphy, Existence and classification of overtwisted contact structures in all dimensions, 2014.
    @misc{BEM,
      author = {Borman, M. S. and Eliashberg, Y. and Murphy, E.},
      title = {Existence and classification of overtwisted contact structures in all dimensions},
      year = {2014},
      arxiv = {1404.6157},
      }
  • [BCS] Go to document J. Bowden, D. Crowley, and A. I. Stipsicz, "Contact structures on $M\times S^2$," Math. Ann., vol. 358, iss. 1-2, pp. 351-359, 2014.
    @article{BCS, mrkey = {3158000},
      author = {Bowden, Jonathan and Crowley, Diarmuid and Stipsicz, Andr{á}s I.},
      title = {Contact structures on {$M\times S\sp 2$}},
      journal = {Math. Ann.},
      fjournal = {Mathematische Annalen},
      volume = {358},
      year = {2014},
      number = {1-2},
      pages = {351--359},
      issn = {0025-5831},
      mrclass = {53D10 (53D35 57R65 57R77)},
      mrnumber = {3158000},
      mrreviewer = {Hansj{ö}rg Geiges},
      doi = {10.1007/s00208-013-0963-9},
      zblnumber = {1286.57022},
      }
  • [Bk] Go to document . R. Baykur, "Kähler decomposition of 4-manifolds," Algebr. Geom. Topol., vol. 6, pp. 1239-1265, 2006.
    @article{Bk, mrkey = {2253445},
      author = {Baykur, R. {\.I}nan{ç}},
      title = {Kähler decomposition of 4-manifolds},
      journal = {Algebr. Geom. Topol.},
      fjournal = {Algebraic \& Geometric Topology},
      volume = {6},
      year = {2006},
      pages = {1239--1265},
      issn = {1472-2747},
      mrclass = {53D35 (57M50 57N13 57R17)},
      mrnumber = {2253445},
      mrreviewer = {Michael J. Usher},
      doi = {10.2140/agt.2006.6.1239},
      zblnumber = {1133.57011},
      }
  • [Bo] Go to document F. Bourgeois, "Odd dimensional tori are contact manifolds," Internat. Math. Res. Not., vol. 2002, p. no. 30, 115-120.
    @article{Bo, MRKEY={1912277},
      key = {Bou12},
      author = {Bourgeois, F.},
      title = {Odd dimensional tori are contact manifolds},
      journal = {Internat. Math. Res. Not.},
      volume = {2002},
      pages = {no. 30, 115--120},
      sortyear = {2002},
      zblnumber = {1021.53055},
      MRNUMBER = {1912277},
      DOI = {10.1155/S1073792802205048},
     }
  • [BW] Go to document W. M. Boothby and H. C. Wang, "On contact manifolds," Ann. of Math., vol. 68, pp. 721-734, 1958.
    @article{BW, mrkey = {0112160},
      author = {Boothby, W. M. and Wang, H. C.},
      title = {On contact manifolds},
      journal = {Ann. of Math.},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {68},
      year = {1958},
      pages = {721--734},
      issn = {0003-486X},
      mrclass = {57.00},
      mrnumber = {0112160},
      mrreviewer = {S. Kobayashi},
      doi = {10.2307/1970165},
      zblnumber = {0084.39204},
      }
  • [Co] Go to document V. Colin, "Livres ouverts en géométrie de contact (d’après Emmanuel Giroux)," in Séminaire Bourbaki. Vol. 2006/2007, Paris: Soc. Math. France, 2008, vol. 317, p. exp. no. 969, vii, 91-118.
    @incollection{Co, mrkey = {2487731},
      author = {Colin, Vincent},
      title = {Livres ouverts en géométrie de contact (d'après {E}mmanuel {G}iroux)},
      booktitle = {S{é}minaire Bourbaki. Vol. 2006/2007},
      series = {Astérisque},
      fjournal = {Astérisque},
      publisher = {Soc. Math. France},
      address = {Paris},
      volume = {317},
      year = {2008},
      pages = {Exp. No. 969, vii, 91--118},
      issn = {0303-1179},
      isbn = {978-2-85629-253-2},
      mrclass = {57R17 (53D35 57M50)},
      mrnumber = {2487731},
      mrreviewer = {Hansj{ö}rg Geiges},
      zblnumber = {1156.57020},
      URL ={http://smf4.emath.fr/en/Publications/Asterisque/2008/317/html/smf_ast_317_91-118.html},
      }
  • [CPP] Go to document R. Casals, D. M. Pancholi, and F. Presas, "Contact blow-up," Expo. Math., vol. 33, iss. 1, pp. 78-100, 2015.
    @article{CPP, MRKEY={3310929},
      AUTHOR = {Casals, Roger and Pancholi, Dishant M. and Presas, Francisco},
      TITLE = {Contact blow-up},
      JOURNAL = {Expo. Math.},
      FJOURNAL = {Expositiones Mathematicae},
      VOLUME = {33},
      YEAR = {2015},
      NUMBER = {1},
      PAGES = {78--100},
      ISSN = {0723-0869},
      MRCLASS = {53D10 (57R17)},
      MRNUMBER = {3310929},
      DOI = {10.1016/j.exmath.2014.02.003},
      ZBLNUMBER = {06409100},
     }
  • [DGS] Go to document F. Ding, H. Geiges, and A. I. Stipsicz, "Lutz twist and contact surgery," Asian J. Math., vol. 9, iss. 1, pp. 57-64, 2005.
    @article{DGS, mrkey = {2150691},
      author = {Ding, Fan and Geiges, Hansj{ö}rg and Stipsicz, Andr{á}s I.},
      title = {Lutz twist and contact surgery},
      journal = {Asian J. Math.},
      fjournal = {The Asian Journal of Mathematics},
      volume = {9},
      year = {2005},
      number = {1},
      pages = {57--64},
      issn = {1093-6106},
      mrclass = {53D35 (57R17 57R65)},
      mrnumber = {2150691},
      mrreviewer = {John B. Etnyre},
      doi = {10.4310/AJM.2005.v9.n1.a5},
      zblnumber = {1081.53068},
      }
  • [Do1] Go to document S. K. Donaldson, "Symplectic submanifolds and almost-complex geometry," J. Differential Geom., vol. 44, iss. 4, pp. 666-705, 1996.
    @article{Do1, mrkey = {1438190},
      author = {Donaldson, S. K.},
      title = {Symplectic submanifolds and almost-complex geometry},
      journal = {J. Differential Geom.},
      fjournal = {Journal of Differential Geometry},
      volume = {44},
      year = {1996},
      number = {4},
      pages = {666--705},
      issn = {0022-040X},
      coden = {JDGEAS},
      mrclass = {53C15 (53C40 53C65 57R15 58F05)},
      mrnumber = {1438190},
      mrreviewer = {Daniel Pollack},
      url = {http://projecteuclid.org/euclid.jdg/1214459407},
      zblnumber = {0883.53032},
      }
  • [Do2] Go to document S. K. Donaldson, "Lefschetz pencils on symplectic manifolds," J. Differential Geom., vol. 53, iss. 2, pp. 205-236, 1999.
    @article{Do2, mrkey = {1802722},
      author = {Donaldson, S. K.},
      title = {Lefschetz pencils on symplectic manifolds},
      journal = {J. Differential Geom.},
      fjournal = {Journal of Differential Geometry},
      volume = {53},
      year = {1999},
      number = {2},
      pages = {205--236},
      issn = {0022-040X},
      coden = {JDGEAS},
      mrclass = {53D35 (57R17)},
      mrnumber = {1802722},
      mrreviewer = {Burak Ozbagci},
      url = {http://projecteuclid.org/euclid.jdg/1214425535},
      zblnumber = {1040.53094},
      }
  • [El] Go to document Y. Eliashberg, "Classification of overtwisted contact structures on $3$-manifolds," Invent. Math., vol. 98, iss. 3, pp. 623-637, 1989.
    @article{El, mrkey = {1022310},
      author = {Eliashberg, Y.},
      title = {Classification of overtwisted contact structures on \hbox{{$3$}-manifolds}},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {98},
      year = {1989},
      number = {3},
      pages = {623--637},
      issn = {0020-9910},
      coden = {INVMBH},
      mrclass = {53C15 (53C57 58A15 58C27)},
      mrnumber = {1022310},
      mrreviewer = {Yong-Geun Oh},
      doi = {10.1007/BF01393840},
      zblnumber = {0684.57012},
      }
  • [EM] Y. Eliashberg and N. Mishachev, Introduction to the $h$-Principle, Providence, RI: Amer. Math. Soc., 2002, vol. 48.
    @book{EM, mrkey = {1909245},
      author = {Eliashberg, Y. and Mishachev, N.},
      title = {Introduction to the {$h$}-Principle},
      series = {Grad. Stud. Math.},
      volume = {48},
      publisher = {Amer. Math. Soc.},
      address = {Providence, RI},
      year = {2002},
      pages = {xviii+206},
      isbn = {0-8218-3227-1},
      mrclass = {53D99 (57R17 58E99)},
      mrnumber = {1909245},
      mrreviewer = {John B. Etnyre},
      zblnumber = {1008.58001},
      }
  • [EP] Go to document J. B. Etnyre and D. M. Pancholi, "On generalizing Lutz twists," J. Lond. Math. Soc., vol. 84, iss. 3, pp. 670-688, 2011.
    @article{EP, mrkey = {2855796},
      author = {Etnyre, John B. and Pancholi, Dishant M.},
      title = {On generalizing {L}utz twists},
      journal = {J. Lond. Math. Soc.},
      fjournal = {Journal of the London Mathematical Society. Second Series},
      volume = {84},
      year = {2011},
      number = {3},
      pages = {670--688},
      issn = {0024-6107},
      mrclass = {57R17 (35D35)},
      mrnumber = {2855796},
      mrreviewer = {Hansj{ö}rg Geiges},
      doi = {10.1112/jlms/jdr028},
      zblnumber = {1254.57020},
      }
  • [Et] J. B. Etnyre, Contact structures on $5$-manifolds.
    @misc{Et,
      author = {Etnyre, John B.},
      title = {Contact structures on {$5$}-manifolds},
      note = {{\it Geom. Topol.},
      to appear},
      arxiv = {1210.5208},
      }
  • [Ge] Go to document H. Geiges, An Introduction to Contact Topology, Cambridge: Cambridge Univ. Press, 2008.
    @book{Ge, mrkey = {2397738},
      author = {Geiges, Hansj{ö}rg},
      title = {An Introduction to Contact Topology},
      series = {Cambridge Stud. Adv. Math.},
      number = {109},
      publisher = {Cambridge Univ. Press},
      address = {Cambridge},
      year = {2008},
      pages = {xvi+440},
      isbn = {978-0-521-86585-2},
      mrclass = {57R17 (53D35)},
      mrnumber = {2397738},
      mrreviewer = {John B. Etnyre},
      doi = {10.1017/CBO9780511611438},
      zblnumber = {1153.53002},
      }
  • [Ge1] Go to document H. Geiges, "Contact structures on $1$-connected $5$-manifolds," Mathematika, vol. 38, iss. 2, pp. 303-311 (1992), 1991.
    @article{Ge1, mrkey = {1147828},
      author = {Geiges, Hansj{ö}rg},
      title = {Contact structures on {$1$}-connected {$5$}-manifolds},
      journal = {Mathematika},
      fjournal = {Mathematika. A Journal of Pure and Applied Mathematics},
      volume = {38},
      year = {1991},
      number = {2},
      pages = {303--311 (1992)},
      issn = {0025-5793},
      coden = {MTKAAB},
      mrclass = {57R15 (53C15)},
      mrnumber = {1147828},
      mrreviewer = {Stere Ianus},
      doi = {10.1112/S002557930000663X},
      zblnumber = {0724.57017},
      }
  • [Ge2] Go to document H. Geiges, "Applications of contact surgery," Topology, vol. 36, iss. 6, pp. 1193-1220, 1997.
    @article{Ge2, mrkey = {1452848},
      author = {Geiges, Hansj{ö}rg},
      title = {Applications of contact surgery},
      journal = {Topology},
      fjournal = {Topology. An International Journal of Mathematics},
      volume = {36},
      year = {1997},
      number = {6},
      pages = {1193--1220},
      issn = {0040-9383},
      coden = {TPLGAF},
      mrclass = {57R15 (53C15 57R65)},
      mrnumber = {1452848},
      mrreviewer = {Karl Friedrich Siburg},
      doi = {10.1016/S0040-9383(97)00004-9},
      zblnumber = {0912.57019},
      }
  • [Ge3] Go to document H. Geiges, "Constructions of contact manifolds," Math. Proc. Cambridge Philos. Soc., vol. 121, iss. 3, pp. 455-464, 1997.
    @article{Ge3, mrkey = {1434654},
      author = {Geiges, Hansj{ö}rg},
      title = {Constructions of contact manifolds},
      journal = {Math. Proc. Cambridge Philos. Soc.},
      fjournal = {Mathematical Proceedings of the Cambridge Philosophical Society},
      volume = {121},
      year = {1997},
      number = {3},
      pages = {455--464},
      issn = {0305-0041},
      coden = {MPCPCO},
      mrclass = {53C15 (58F05)},
      mrnumber = {1434654},
      mrreviewer = {Rostislav Matveyev},
      doi = {10.1017/S0305004196001260},
      ZBLNUMBER = {0882.57007},
     }
  • [GT1] Go to document H. Geiges and C. B. Thomas, "Contact topology and the structure of $5$-manifolds with $\pi_1=Z_2$," Ann. Inst. Fourier $($Grenoble$)$, vol. 48, iss. 4, pp. 1167-1188, 1998.
    @article {GT1, MRKEY = {1656012},
      AUTHOR = {Geiges, Hansj{ö}rg and Thomas, Charles B.},
      TITLE = {Contact topology and the structure of {$5$}-manifolds with {$\pi\sb 1=Z\sb 2$}},
      JOURNAL = {Ann. Inst. Fourier $($Grenoble$)$},
      FJOURNAL = {Université de Grenoble. Annales de l'Institut Fourier},
      VOLUME = {48},
      YEAR = {1998},
      NUMBER = {4},
      PAGES = {1167--1188},
      ISSN = {0373-0956},
      CODEN = {AIFUA7},
      MRCLASS = {57R17 (53D35 57R15 57R65 57R90)},
      MRNUMBER = {1656012},
      MRREVIEWER = {John B. Etnyre},
      URL = {http://www.numdam.org/item?id=AIF_1998__48_4_1167_0},
      ZBLNUMBER = {0912.57020},
     }
  • [GT2] Go to document H. Geiges and C. B. Thomas, "Contact structures, equivariant spin bordism, and periodic fundamental groups," Math. Ann., vol. 320, iss. 4, pp. 685-708, 2001.
    @article{GT2, mrkey = {1857135},
      author = {Geiges, Hansj{ö}rg and Thomas, Charles B.},
      title = {Contact structures, equivariant spin bordism, and periodic fundamental groups},
      journal = {Math. Ann.},
      fjournal = {Mathematische Annalen},
      volume = {320},
      year = {2001},
      number = {4},
      pages = {685--708},
      issn = {0025-5831},
      coden = {MAANA},
      mrclass = {57R15 (53D35 57R85)},
      mrnumber = {1857135},
      mrreviewer = {John B. Etnyre},
      doi = {10.1007/PL00004491},
      zblnumber = {0983.57017},
      }
  • [GS] Go to document H. Geiges and A. I. Stipsicz, "Contact structures on product five-manifolds and fibre sums along circles," Math. Ann., vol. 348, iss. 1, pp. 195-210, 2010.
    @article{GS, mrkey = {2657439},
      author = {Geiges, Hansj{ö}rg and Stipsicz, Andr{á}s I.},
      title = {Contact structures on product five-manifolds and fibre sums along circles},
      journal = {Math. Ann.},
      fjournal = {Mathematische Annalen},
      volume = {348},
      year = {2010},
      number = {1},
      pages = {195--210},
      issn = {0025-5831},
      coden = {MAANA},
      mrclass = {57R17 (53D35)},
      mrnumber = {2657439},
      mrreviewer = {David T. Gay},
      doi = {10.1007/s00208-009-0472-z},
      zblnumber = {1216.53076},
      }
  • [Gi] E. Giroux, "Géométrie de contact: de la dimension trois vers les dimensions supérieures," in Proceedings of the International Congress of Mathematicians, Vol. II, Beijing, 2002, pp. 405-414.
    @inproceedings{Gi, mrkey = {1957051},
      author = {Giroux, Emmanuel},
      title = {Géométrie de contact: de la dimension trois vers les dimensions supérieures},
      booktitle = {Proceedings of the {I}nternational {C}ongress of {M}athematicians, {V}ol. {II}},
      venue = {{B}eijing, 2002},
      pages = {405--414},
      publisher = {Higher Ed. Press},
      address = {Beijing},
      year = {2002},
      mrclass = {53D35 (57M50 57R17)},
      mrnumber = {1957051},
      mrreviewer = {Hansj{ö}rg Geiges},
      zblnumber = {1015.53049},
      }
  • [HW] B. Hajduk and R. Walczak, Constructions of contact forms on products and piecewise fibered manifolds, 2012.
    @misc{HW,
      author = {Hajduk, B. and Walczak, R.},
      title = {Constructions of contact forms on products and piecewise fibered manifolds},
      arxiv = {1204.1692},
      year = {2012},
      }
  • [IbortDMT] Go to document A. Ibort and D. Mart’inez-Torres, "Approximately holomorphic geometry and estimated transversality on 2-calibrated manifolds," C. R. Math. Acad. Sci. Paris, vol. 338, iss. 9, pp. 709-712, 2004.
    @article{IbortDMT, mrkey = {2065379},
      author = {Ibort, Alberto and Mart{\'ı}nez-Torres, David},
      title = {Approximately holomorphic geometry and estimated transversality on 2-calibrated manifolds},
      journal = {C. R. Math. Acad. Sci. Paris},
      fjournal = {Comptes Rendus Mathématique. Académie des Sciences. Paris},
      volume = {338},
      year = {2004},
      number = {9},
      pages = {709--712},
      issn = {1631-073X},
      mrclass = {53D35 (53C38)},
      mrnumber = {2065379},
      mrreviewer = {Alexandru L. Oancea},
      doi = {10.1016/j.crma.2004.03.003},
      zblnumber = {1057.53043},
      }
  • [IbortDMT2] Go to document A. Ibort and D. Mart’inez-Torres, "Lefschetz pencil structures for 2-calibrated manifolds," C. R. Math. Acad. Sci. Paris, vol. 339, iss. 3, pp. 215-218, 2004.
    @article{IbortDMT2, mrkey = {2078077},
      author = {Ibort, Alberto and Mart{\'ı}nez-Torres, David},
      title = {Lefschetz pencil structures for 2-calibrated manifolds},
      journal = {C. R. Math. Acad. Sci. Paris},
      fjournal = {Comptes Rendus Mathématique. Académie des Sciences. Paris},
      volume = {339},
      year = {2004},
      number = {3},
      pages = {215--218},
      issn = {1631-073X},
      mrclass = {53D35 (57R17)},
      mrnumber = {2078077},
      mrreviewer = {Ivan Smith},
      doi = {10.1016/j.crma.2004.05.018},
      zblnumber = {1054.57029},
      }
  • [IMP] Go to document A. Ibort, D. Mart’inez-Torres, and F. Presas, "On the construction of contact submanifolds with prescribed topology," J. Differential Geom., vol. 56, iss. 2, pp. 235-283, 2000.
    @article{IMP, mrkey = {1863017},
      author = {Ibort, Alberto and Mart{\'ı}nez-Torres, David and Presas, F.},
      title = {On the construction of contact submanifolds with prescribed topology},
      journal = {J. Differential Geom.},
      fjournal = {Journal of Differential Geometry},
      volume = {56},
      year = {2000},
      number = {2},
      pages = {235--283},
      issn = {0022-040X},
      coden = {JDGEAS},
      mrclass = {53D35 (57R17 57R95)},
      mrnumber = {1863017},
      mrreviewer = {Ignasi Mundet-Riera},
      url = {http://projecteuclid.org/euclid.jdg/1090347644},
      zblnumber = {1034.53088},
      }
  • [Ko] O. van Koert, Lecture notes on stabilization of contact open books, 2010.
    @misc{Ko,
      author = {van Koert, O.},
      title = {Lecture notes on stabilization of contact open books},
      arxiv = {1012.4359},
      year = {2010},
      }
  • [Le] Go to document E. Lerman, "Contact fiber bundles," J. Geom. Phys., vol. 49, iss. 1, pp. 52-66, 2004.
    @article{Le, mrkey = {2077244},
      author = {Lerman, Eugene},
      title = {Contact fiber bundles},
      journal = {J. Geom. Phys.},
      fjournal = {Journal of Geometry and Physics},
      volume = {49},
      year = {2004},
      number = {1},
      pages = {52--66},
      issn = {0393-0440},
      coden = {JGPHE5},
      mrclass = {53D10 (53D20)},
      mrnumber = {2077244},
      mrreviewer = {John B. Etnyre},
      doi = {10.1016/S0393-0440(03)00060-3},
      zblnumber = {1074.53065},
      }
  • [DMTMPresas] D. V. Mart’inez-Torres, V. Muñoz, and F. Presas, "Open book decompositions for almost contact manifolds," in Proceedings of the XI Fall Workshop on Geometry and Physics, Madrid: R. Soc. Mat. Esp., Madrid, 2004, vol. 6, pp. 131-149.
    @incollection{DMTMPresas, MRKEY={2123571},
      author = {Mart{\'ı}nez-Torres, , David V. and Muñoz, V. and Presas, F.},
      title = {Open book decompositions for almost contact manifolds},
      booktitle = {Proceedings of the XI Fall Workshop on Geometry and Physics},
      NOTE = {Universidad de Oviedo, Oviedo, Spain (2002)},
      SERIES = {Publ. R. Soc. Mat. Esp.},
      VOLUME = {6},
      PAGES = {131--149},
      YEAR = {2004},
      publisher = {R. Soc. Mat. Esp., Madrid},
      address = {Madrid},
      MRCLASS = {53D15 (53D35 53D50 57R17)},
      MRNUMBER = {2123571},
      MRREVIEWER = {Hansj{ö}rg Geiges},
      }
  • [Lu1] Go to document R. Lutz, "Structures de contact sur les fibrés principaux en cercles de dimension trois," Ann. Inst. Fourier $($Grenoble$)$, vol. 27, iss. 3, p. ix, 1-15, 1977.
    @article{Lu1, mrkey = {0478180},
      author = {Lutz, Robert},
      title = {Structures de contact sur les fibrés principaux en cercles de dimension trois},
      journal = {Ann. Inst. Fourier $($Grenoble$)$},
      fjournal = {Université de Grenoble. Annales de l'Institut Fourier},
      volume = {27},
      year = {1977},
      number = {3},
      pages = {ix, 1--15},
      issn = {0373-0956},
      mrclass = {57E15 (57D15)},
      mrnumber = {0478180},
      mrreviewer = {Robert Roussarie},
      url = {http://www.numdam.org/item?id=AIF_1977__27_3_1_0},
      zblnumber = {0328.53024},
      }
  • [Lu2] R. Lutz, "Structures de contact et systèmes de Pfaff à pivot," in Third Schnepfenried Geometry Conference, Vol. 1, Paris: Soc. Math. France, 1983, vol. 107, pp. 175-187.
    @incollection{Lu2, mrkey = {0753134},
      author = {Lutz, Robert},
      title = {Structures de contact et systèmes de {P}faff à pivot},
      booktitle = {Third {S}chnepfenried Geometry Conference, {V}ol. 1},
      venue = {{S}chnepfenried, 1982},
      series = {Astérisque},
      volume = {107},
      pages = {175--187},
      publisher = {Soc. Math. France},
      address = {Paris},
      year = {1983},
      mrclass = {58A30 (53C15 57R25)},
      mrnumber = {0753134},
      mrreviewer = {Raymond Barre},
      ZBLNUMBER = {0536.58001},
     }
  • [Ma] Go to document J. Martinet, "Formes de contact sur les variétés de dimension $3$," in Proceedings of Liverpool Singularities Symposium, II (1969/1970), New York, 1971, pp. 142-163.
    @inproceedings{Ma, mrkey = {0350771},
      author = {Martinet, J.},
      title = {Formes de contact sur les variétés de dimension {$3$}},
      booktitle = {Proceedings of {L}iverpool {S}ingularities {S}ymposium, {II} (1969/1970)},
      pages = {142--163},
      series = {Lecture Notes in Math.},
      volume = {209},
      publisher = {Springer-Verlag},
      year = {1971},
      mrclass = {58A10},
      mrnumber = {0350771},
      mrreviewer = {H. B. Griffiths},
      address = {New York},
      zblnumber = {0215.23003},
      doi = {10.1007/BFb0068901},
      }
  • [MT] Go to document D. V. Mart’inez-Torres, "The geometry of 2-calibrated manifolds," Port. Math., vol. 66, iss. 4, pp. 427-512, 2009.
    @article{MT, mrkey = {2567679},
      author = {Mart{\'ı}nez-Torres, David V.},
      title = {The geometry of 2-calibrated manifolds},
      journal = {Port. Math.},
      fjournal = {Portugaliae Mathematica. A Journal of the Portuguese Mathematical Society},
      volume = {66},
      year = {2009},
      number = {4},
      pages = {427--512},
      issn = {0032-5155},
      mrclass = {53D35 (32Q60)},
      mrnumber = {2567679},
      mrreviewer = {Timothy Perutz},
      doi = {10.4171/PM/1852},
      zblnumber = {1183.53047},
      }
  • [Ni] Go to document K. Niederkrüger, "The plastikstufe—a generalization of the overtwisted disk to higher dimensions," Algebr. Geom. Topol., vol. 6, pp. 2473-2508, 2006.
    @article{Ni, mrkey = {2286033},
      author = {Niederkr{ü}ger, Klaus},
      title = {The plastikstufe---a generalization of the overtwisted disk to higher dimensions},
      journal = {Algebr. Geom. Topol.},
      fjournal = {Algebraic \& Geometric Topology},
      volume = {6},
      year = {2006},
      pages = {2473--2508},
      issn = {1472-2747},
      mrclass = {57R17 (53D35)},
      mrnumber = {2286033},
      mrreviewer = {John B. Etnyre},
      doi = {10.2140/agt.2006.6.2473},
      zblnumber = {1129.53056},
      }
  • [NP] Go to document K. Niederkrüger and F. Presas, "Some remarks on the size of tubular neighborhoods in contact topology and fillability," Geom. Topol., vol. 14, iss. 2, pp. 719-754, 2010.
    @article{NP, mrkey = {2602849},
      author = {Niederkr{ü}ger, Klaus and Presas, Francisco},
      title = {Some remarks on the size of tubular neighborhoods in contact topology and fillability},
      journal = {Geom. Topol.},
      fjournal = {Geometry \& Topology},
      volume = {14},
      year = {2010},
      number = {2},
      pages = {719--754},
      issn = {1465-3060},
      mrclass = {57R17 (53D35)},
      mrnumber = {2602849},
      mrreviewer = {David T. Gay},
      doi = {10.2140/gt.2010.14.719},
      zblnumber = {1186.57020},
      }
  • [Fran1] F. Presas, "Lefschetz type pencils on contact manifolds," Asian J. Math., vol. 6, iss. 2, pp. 277-301, 2002.
    @article{Fran1, mrkey = {1928631},
      author = {Presas, F.},
      title = {Lefschetz type pencils on contact manifolds},
      journal = {Asian J. Math.},
      fjournal = {The Asian Journal of Mathematics},
      volume = {6},
      year = {2002},
      number = {2},
      pages = {277--301},
      issn = {1093-6106},
      mrclass = {57R17 (53D35)},
      mrnumber = {1928631},
      mrreviewer = {David F. Mart{\'ı}nez-Torres},
      zblnumber = {1101.53055},
      }
  • [Pr2] Go to document F. Presas, "A class of non-fillable contact structures," Geom. Topol., vol. 11, pp. 2203-2225, 2007.
    @article{Pr2, mrkey = {2372846},
      author = {Presas, Francisco},
      title = {A class of non-fillable contact structures},
      journal = {Geom. Topol.},
      fjournal = {Geometry \& Topology},
      volume = {11},
      year = {2007},
      pages = {2203--2225},
      issn = {1465-3060},
      mrclass = {53D35 (57R17)},
      mrnumber = {2372846},
      mrreviewer = {John B. Etnyre},
      doi = {10.2140/gt.2007.11.2203},
      zblnumber = {1132.57023},
      }
  • [Na] Go to document F. Presas, "Geometric decompositions of almost contact manifolds," in Contact and Symplectic Topology, Budapest: János Bolyai Math. Soc., 2014, vol. 26, pp. 137-172.
    @incollection{Na, mrkey = {3220942},
      author = {Presas, Francisco},
      title = {Geometric decompositions of almost contact manifolds},
      booktitle = {Contact and Symplectic Topology},
      series = {Bolyai Soc. Math. Stud.},
      volume = {26},
      pages = {137--172},
      publisher = {János Bolyai Math. Soc.},
      address = {Budapest},
      year = {2014},
      mrclass = {53D10 (53D15 57R17)},
      mrnumber = {3220942},
      doi = {10.1007/978-3-319-02036-5_4},
      }

Authors

Roger Casals

Instituto de Ciencias Matemáticas, C. Nicolás Cabrera, Madrid, Spain

Dishant M. Pancholi

Chennai Mathematical Institute, Kelambakkam, Siruseri, India

Francisco Presas

Instituto de Ciencias Matemáticas, C. Nicolás Cabrera, Madrid, Spain