Uniqueness of blowups and Łojasiewicz inequalities

Abstract

Once one knows that singularities occur, one naturally wonders what the singularities are like. For minimal varieties the first answer, already known to Federer-Fleming in 1959, is that they weakly resemble cones. For mean curvature flow, by the combined work of Huisken, Ilmanen, and White, singularities weakly resemble shrinkers. Unfortunately, the simple proofs leave open the possibility that a minimal variety or a mean curvature flow looked at under a microscope will resemble one blowup, but under higher magnification, it might (as far as anyone knows) resemble a completely different blowup. Whether this ever happens is one of the most fundamental questions about singularities. It is this long standing open question that we settle here for mean curvature flow at all generic singularities and for mean convex mean curvature flow at all singularities.

Note: To view the article, click on the URL link for the DOI number.

  • [AA] Go to document W. K. Allard and F. J. Almgren Jr., "On the radial behavior of minimal surfaces and the uniqueness of their tangent cones," Ann. of Math., vol. 113, iss. 2, pp. 215-265, 1981.
    @article{AA, mrkey = {0607893},
      author = {Allard, William K. and Almgren, Jr., Frederick J.},
      title = {On the radial behavior of minimal surfaces and the uniqueness of their tangent cones},
      journal = {Ann. of Math.},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {113},
      year = {1981},
      number = {2},
      pages = {215--265},
      issn = {0003-486X},
      coden = {ANMAAH},
      mrclass = {49F22 (53A10 58E12)},
      mrnumber = {0607893},
      mrreviewer = {E. Giusti},
      doi = {10.2307/2006984},
      zblnumber = {0437.53045},
      }
  • [AAG] Go to document S. Altschuler, S. B. Angenent, and Y. Giga, "Mean curvature flow through singularities for surfaces of rotation," J. Geom. Anal., vol. 5, iss. 3, pp. 293-358, 1995.
    @article{AAG, mrkey = {1360824},
      author = {Altschuler, Steven and Angenent, Sigurd B. and Giga, Yoshikazu},
      title = {Mean curvature flow through singularities for surfaces of rotation},
      journal = {J. Geom. Anal.},
      fjournal = {The Journal of Geometric Analysis},
      volume = {5},
      year = {1995},
      number = {3},
      pages = {293--358},
      issn = {1050-6926},
      mrclass = {58E15 (35K55 53A07)},
      mrnumber = {1360824},
      doi = {10.1007/BF02921800},
      zblnumber = {0847.58072},
      }
  • [An] Go to document B. Andrews, "Noncollapsing in mean-convex mean curvature flow," Geom. Topol., vol. 16, iss. 3, pp. 1413-1418, 2012.
    @article{An, mrkey = {2967056},
      author = {Andrews, Ben},
      title = {Noncollapsing in mean-convex mean curvature flow},
      journal = {Geom. Topol.},
      fjournal = {Geometry \& Topology},
      volume = {16},
      year = {2012},
      number = {3},
      pages = {1413--1418},
      issn = {1465-3060},
      mrclass = {53C44},
      mrnumber = {2967056},
      mrreviewer = {Kai Seng Chou},
      doi = {10.2140/gt.2012.16.1413},
      zblnumber = {1250.53063},
      }
  • [Be] P. A. Beck, Metal Interfaces, Cleveland, OH: Amer. Soc. for Testing Materials, 1952.
    @book{Be,
      author = {Beck, P. A.},
      title = {Metal Interfaces},
      note = {p.~208},
      address = {Cleveland, OH},
      publisher = {Amer. Soc. for Testing Materials},
      year = {1952},
      }
  • [B] K. A. Brakke, The Motion of a Surface by its Mean Curvature, Princeton, N.J.: Princeton Univ. Press, 1978, vol. 20.
    @book{B, mrkey = {0485012},
      author = {Brakke, Kenneth A.},
      title = {The Motion of a Surface by its Mean Curvature},
      series = {Math. Notes},
      volume = {20},
      publisher = {Princeton Univ. Press},
      address = {Princeton, N.J.},
      year = {1978},
      pages = {i+252},
      isbn = {0-691-08204-9},
      mrclass = {49F22 (35K99 49F20 58D25)},
      mrnumber = {0485012},
      mrreviewer = {Jean E. Taylor},
      zblnumber = {0386.53047},
      }
  • [BaE] Go to document D. Bakry and M. Émery, "Diffusions hypercontractives," in Séminaire de Probabilités, XIX, 1983/84, New York: Springer-Verlag, 1985, vol. 1123, pp. 177-206.
    @incollection{BaE, mrkey = {0889476},
      author = {Bakry, D. and {É}mery, Michel},
      title = {Diffusions hypercontractives},
      booktitle = {Séminaire de Probabilités, {XIX},
      1983/84},
      series = {Lecture Notes in Math.},
      volume = {1123},
      pages = {177--206},
      publisher = {Springer-Verlag},
      year = {1985},
      mrclass = {60J60 (58C40 58G32)},
      mrnumber = {0889476},
      mrreviewer = {Jacques Vauthier},
      doi = {10.1007/BFb0075847},
      address = {New York},
      zblnumber = {0561.60080},
      }
  • [BrCoL] Go to document H. Brezis, J. Coron, and E. H. Lieb, "Harmonic maps with defects," Comm. Math. Phys., vol. 107, iss. 4, pp. 649-705, 1986.
    @article{BrCoL, mrkey = {0868739},
      author = {Brezis, Ha{ï}m and Coron, Jean-Michel and Lieb, Elliott H.},
      title = {Harmonic maps with defects},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {107},
      year = {1986},
      number = {4},
      pages = {649--705},
      issn = {0010-3616},
      coden = {CMPHAY},
      mrclass = {58E20 (81E13 82A05)},
      mrnumber = {0868739},
      mrreviewer = {John C. Wood},
      doi = {10.1007/BF01205490},
      zblnumber = {0608.58016},
     }
  • [Bu] J. Burke, "Some factors affecting the rate of grain growth in metals," AIME Trans., vol. 180, pp. 73-91, 1949.
    @article{Bu,
      author = {Burke, J.},
      title = {Some factors affecting the rate of grain growth in metals},
      journal = {AIME Trans.},
      year = {1949},
      volume = {180},
      pages = {73--91},
      }
  • [CIM] T. H. Colding, T. Ilmanen, and W. P. Minicozzi II, Rigidity of generic singularities of mean curvature flow, 2013.
    @misc{CIM,
      author = {Colding, Tobias Holck and Ilmanen, Tom and Minicozzi, II, William P.},
      title = {Rigidity of generic singularities of mean curvature flow},
      year = {2013},
      NOTE={to appear in {\it Publ. IHES}},
      arxiv = {1304.6356},
      }
  • [CIMW] Go to document T. H. Colding, T. Ilmanen, W. P. Minicozzi II, and B. White, "The round sphere minimizes entropy among closed self-shrinkers," J. Differential Geom., vol. 95, iss. 1, pp. 53-69, 2013.
    @article{CIMW, mrkey = {3128979},
      author = {Colding, Tobias Holck and Ilmanen, Tom and Minicozzi, II, William P. and White, Brian},
      title = {The round sphere minimizes entropy among closed self-shrinkers},
      journal = {J. Differential Geom.},
      fjournal = {Journal of Differential Geometry},
      volume = {95},
      year = {2013},
      number = {1},
      pages = {53--69},
      issn = {0022-040X},
      mrclass = {53C44 (53A07 53C21)},
      mrnumber = {3128979},
      mrreviewer = {Alina Stancu},
      url = {http://projecteuclid.org/euclid.jdg/1375124609},
      zblnumber = {1278.53069},
      }
  • [CM1] Go to document T. H. Colding and W. P. Minicozzi II, "Generic mean curvature flow I: generic singularities," Ann. of Math., vol. 175, iss. 2, pp. 755-833, 2012.
    @article{CM1, mrkey = {2993752},
      author = {Colding, Tobias H. and Minicozzi, II, William P.},
      title = {Generic mean curvature flow {I}: generic singularities},
      journal = {Ann. of Math.},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {175},
      year = {2012},
      number = {2},
      pages = {755--833},
      issn = {0003-486X},
      coden = {ANMAAH},
      mrclass = {53C44 (35K55 35K99 53A10 53C42 58E30 58K60)},
      mrnumber = {2993752},
      mrreviewer = {Paul Bryan},
      doi = {10.4007/annals.2012.175.2.7},
      zblnumber = {1239.53084},
      }
  • [CM3] T. H. Colding and W. P. Minicozzi II, A Course in Minimal Surfaces, Providence, RI: Amer. Math. Soc., 2011, vol. 121.
    @book{CM3,
      author = {Colding, Tobias H. and Minicozzi, II, William P.},
      title = {A Course in Minimal Surfaces},
      series = {Grad. Stud. Math.},
      volume = {121},
      publisher = {Amer. Math. Soc.},
      address = {Providence, RI},
      year = {2011},
      mrnumber = {2780140},
      zblnumber = {1242.53007},
      }
  • [CM4] Go to document T. H. Colding and W. P. Minicozzi II, "On uniqueness of tangent cones for Einstein manifolds," Invent. Math., vol. 196, iss. 3, pp. 515-588, 2014.
    @article{CM4, mrkey = {3211041},
      author = {Colding, Tobias Holck and Minicozzi, II, William P.},
      title = {On uniqueness of tangent cones for {E}instein manifolds},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {196},
      year = {2014},
      number = {3},
      pages = {515--588},
      issn = {0020-9910},
      mrclass = {53C25},
      mrnumber = {3211041},
      doi = {10.1007/s00222-013-0474-z},
      zblnumber = {06309805},
      }
  • [CM5] T. H. Colding and W. P. Minicozzi II, The singular set of mean curvature flow with generic singularities, 2014.
    @misc{CM5,
      author = {Colding, Tobias Holck and Minicozzi, II, William P.},
      title = {The singular set of mean curvature flow with generic singularities},
      year = {2014},
      arxiv = {1405.5187},
      }
  • [CM6] T. H. Colding and W. P. Minicozzi II, Łojasiewicz inequalities and applications, 2014.
    @misc{CM6,
      author = {Colding, Tobias Holck and Minicozzi, II, William P.},
      title = {{\L}ojasiewicz inequalities and applications},
      year = {2014},
      arxiv = {1402.5087},
      }
  • [CM] T. H. Colding and W. P. Minicozzi II, Differentiability of the arrival time, 2015.
    @misc{CM,
      author = {Colding, Tobias Holck and Minicozzi, II, William P.},
      title = {Differentiability of the arrival time},
      NOTE={preprint},
      YEAR={2015},
      arxiv = {1501.07899},
     }
  • [CMP] Go to document T. H. Colding, W. P. Minicozzi II, and E. K. Pedersen, "Mean curvature flow," Bull. Amer. Math. Soc., vol. 52, iss. 2, pp. 297-333, 2015.
    @article{CMP, mrkey = {3312634},
      author = {Colding, Tobias Holck and Minicozzi, II, William P. and Pedersen, E. K.},
      title = {Mean curvature flow},
      JOURNAL={Bull. Amer. Math. Soc.},
      volume = {52},
      year = {2015},
      number = {2},
      pages = {297--333},
      issn = {0273-0979},
      mrclass = {53C44},
      mrnumber = {3312634},
      doi = {10.1090/S0273-0979-2015-01468-0},
      }
  • [EH] Go to document K. Ecker and G. Huisken, "Interior estimates for hypersurfaces moving by mean curvature," Invent. Math., vol. 105, iss. 3, pp. 547-569, 1991.
    @article{EH, mrkey = {1117150},
      author = {Ecker, Klaus and Huisken, Gerhard},
      title = {Interior estimates for hypersurfaces moving by mean curvature},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {105},
      year = {1991},
      number = {3},
      pages = {547--569},
      issn = {0020-9910},
      coden = {INVMBH},
      mrclass = {53A10 (35K55 58E12)},
      mrnumber = {1117150},
      mrreviewer = {Friedrich Sauvigny},
      doi = {10.1007/BF01232278},
      zblnumber = {0707.53008},
      }
  • [FFl] Go to document H. Federer and W. H. Fleming, "Normal and integral currents," Ann. of Math., vol. 72, pp. 458-520, 1960.
    @article{FFl, mrkey = {0123260},
      author = {Federer, Herbert and Fleming, Wendell H.},
      title = {Normal and integral currents},
      journal = {Ann. of Math.},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {72},
      year = {1960},
      pages = {458--520},
      issn = {0003-486X},
      mrclass = {28.80 (53.45)},
      mrnumber = {0123260},
      mrreviewer = {L. C. Young},
      doi = {10.2307/1970227},
      zblnumber = {0187.31301},
      }
  • [GK] Z. Gang and D. Knopf, Universality in mean curvature flow neckpinches, 2013.
    @misc{GK,
      author = {Gang, Z. and Knopf, D.},
      title = {Universality in mean curvature flow neckpinches},
      year = {2013},
      arxiv = {1308.5600},
      note = {{\em Duke Math. J.},
      to appear},
     }
  • [GKS] Z. Gang, D. Knopf, and I. M. Sigal, Neckpinch dynamics for asymmetric surfaces evolving by mean curvature flow, 2011.
    @misc{GKS,
      author = {Gang, Z. and Knopf, D. and Sigal, I. M.},
      title = {Neckpinch dynamics for asymmetric surfaces evolving by mean curvature flow},
      year = {2011},
      arxiv = {1109.0939v1},
      }
  • [GS] Go to document Z. Gang and I. M. Sigal, "Neck pinching dynamics under mean curvature flow," J. Geom. Anal., vol. 19, iss. 1, pp. 36-80, 2009.
    @article{GS, mrkey = {2465296},
      author = {Gang, Zhou and Sigal, Israel Michael},
      title = {Neck pinching dynamics under mean curvature flow},
      journal = {J. Geom. Anal.},
      fjournal = {Journal of Geometric Analysis},
      volume = {19},
      year = {2009},
      number = {1},
      pages = {36--80},
      issn = {1050-6926},
      mrclass = {53C44 (35B40 35K55)},
      mrnumber = {2465296},
      mrreviewer = {James McCoy},
      doi = {10.1007/s12220-008-9050-y},
      zblnumber = {1179.53065},
      }
  • [GGS] Go to document M. Giga, Y. Giga, and J. Saal, Nonlinear Partial Differential Equations. Asymptotic Behavior of Solutions and Self-Similar Solutions, Boston: Birkhäuser, 2010, vol. 79.
    @book{GGS, mrkey = {2656972},
      author = {Giga, Mi-Ho and Giga, Yoshikazu and Saal, J{ü}rgen},
      title = {Nonlinear Partial Differential Equations. Asymptotic Behavior of Solutions and Self-Similar Solutions},
      series = {Progr. Nonlinear Differential Equations Appl.},
      volume = {79},
      publisher = {Birkhäuser},
      address = {Boston},
      year = {2010},
      pages = {xviii+294},
      isbn = {978-0-8176-4173-3},
      mrclass = {35-02 (35B40 35K65 46E35 76D03 76D05)},
      mrnumber = {2656972},
      mrreviewer = {Jes{ú}s Hern{á}ndez},
      doi = {10.1007/978-0-8176-4651-6},
      zblnumber = {1215.35001},
      }
  • [Gr] A. Grigor’yan, Heat Kernel and Analysis on Manifolds, Providence, RI: Amer. Math. Soc., 2009, vol. 47.
    @book{Gr, mrkey = {2569498},
      author = {Grigor'yan, Alexander},
      title = {Heat Kernel and Analysis on Manifolds},
      series = {AMS/IP Stud. Adv. Math.},
      volume = {47},
      publisher = {Amer. Math. Soc.},
      address = {Providence, RI},
      year = {2009},
      pages = {xviii+482},
      isbn = {978-0-8218-4935-4},
      mrclass = {58J35 (31B05 31C12 35K08 35P15 35R01 47D07 58J50)},
      mrnumber = {2569498},
      mrreviewer = {Thierry Coulhon},
      zblnumber = {1206.58008},
      }
  • [Hr] Go to document R. M. Hardt, "Singularities of harmonic maps," Bull. Amer. Math. Soc., vol. 34, iss. 1, pp. 15-34, 1997.
    @article{Hr, mrkey = {1397098},
      author = {Hardt, Robert M.},
      title = {Singularities of harmonic maps},
      journal = {Bull. Amer. Math. Soc.},
      fjournal = {American Mathematical Society. Bulletin. New Series},
      volume = {34},
      year = {1997},
      number = {1},
      pages = {15--34},
      issn = {0273-0979},
      coden = {BAMOAD},
      mrclass = {58E20},
      mrnumber = {1397098},
      mrreviewer = {Martin Fuchs},
      doi = {10.1090/S0273-0979-97-00692-7},
      zblnumber = {0673.58016},
      }
  • [HrLi] Go to document R. M. Hardt and F. Lin, "Stability of singularities of minimizing harmonic maps," J. Differential Geom., vol. 29, iss. 1, pp. 113-123, 1989.
    @article{HrLi, mrkey = {0978080},
      author = {Hardt, Robert M. and Lin, Fang-Hau},
      title = {Stability of singularities of minimizing harmonic maps},
      journal = {J. Differential Geom.},
      fjournal = {Journal of Differential Geometry},
      volume = {29},
      year = {1989},
      number = {1},
      pages = {113--123},
      issn = {0022-040X},
      coden = {JDGEAS},
      mrclass = {58E20},
      mrnumber = {0978080},
      mrreviewer = {Thomas Bartsch},
      url = {http://projecteuclid.org/euclid.jdg/1214442637},
      zblnumber = {0673.58016},
      }
  • [HaP] D. Harker and E. Parker, "Grain shape and grain growth," Trans. Amer. Soc. Met., vol. 34, pp. 156-201, 1945.
    @article{HaP,
      author = {Harker, D. and Parker, E.},
      title = {Grain shape and grain growth},
      journal = {Trans. Amer. Soc. Met.},
      year = {1945},
      volume = {34},
      pages = {156--201},
      }
  • [HaK] R. Haslhofer and B. Kleiner, Mean curvature flow of mean convex hypersurfaces, 2013.
    @misc{HaK,
      author = {Haslhofer, R. and Kleiner, B.},
      title = {Mean curvature flow of mean convex hypersurfaces},
      arxiv = {1304.0926},
      year = {2013},
      }
  • [H1] Go to document G. Huisken, "Asymptotic behavior for singularities of the mean curvature flow," J. Differential Geom., vol. 31, iss. 1, pp. 285-299, 1990.
    @article{H1, mrkey = {1030675},
      author = {Huisken, Gerhard},
      title = {Asymptotic behavior for singularities of the mean curvature flow},
      journal = {J. Differential Geom.},
      fjournal = {Journal of Differential Geometry},
      volume = {31},
      year = {1990},
      number = {1},
      pages = {285--299},
      issn = {0022-040X},
      coden = {JDGEAS},
      mrclass = {53A10 (35B99 53C45 58G11)},
      mrnumber = {1030675},
      mrreviewer = {Dennis M. DeTurck},
      url = {http://projecteuclid.org/euclid.jdg/1214444099},
      zblnumber = {0694.53005},
      }
  • [H2] Go to document G. Huisken, "Local and global behaviour of hypersurfaces moving by mean curvature," in Differential Geometry: Partial Differential Equations on Manifolds, Providence, RI: Amer. Math. Soc., 1993, vol. 54, pp. 175-191.
    @incollection{H2, mrkey = {1216584},
      author = {Huisken, Gerhard},
      title = {Local and global behaviour of hypersurfaces moving by mean curvature},
      booktitle = {Differential Geometry: Partial Differential Equations on Manifolds},
      venue = {{L}os {A}ngeles, {CA},
      1990},
      series = {Proc. Sympos. Pure Math.},
      volume = {54},
      pages = {175--191},
      publisher = {Amer. Math. Soc.},
      address = {Providence, RI},
      year = {1993},
      mrclass = {58E15 (53A10 58G11)},
      mrnumber = {1216584},
      mrreviewer = {Li Ma},
      doi = {10.1090/pspum/054.1/1216584},
      zblnumber = {0791.58090},
      }
  • [H3] Go to document G. Huisken, "Flow by mean curvature of convex surfaces into spheres," J. Differential Geom., vol. 20, iss. 1, pp. 237-266, 1984.
    @article{H3, mrkey = {0772132},
      author = {Huisken, Gerhard},
      title = {Flow by mean curvature of convex surfaces into spheres},
      journal = {J. Differential Geom.},
      fjournal = {Journal of Differential Geometry},
      volume = {20},
      year = {1984},
      number = {1},
      pages = {237--266},
      issn = {0022-040X},
      coden = {JDGEAS},
      mrclass = {53C45 (49F05 58F17)},
      mrnumber = {0772132},
      mrreviewer = {R. Schneider},
      url = {http://projecteuclid.org/euclid.jdg/1214438998},
      zblnumber = {0556.53001},
      }
  • [HP] Go to document G. Huisken and A. Polden, "Geometric evolution equations for hypersurfaces," in Calculus of Variations and Geometric Evolution Problems, New York: Springer-Verlag, 1999, vol. 1713, pp. 45-84.
    @incollection{HP, mrkey = {1731639},
      author = {Huisken, Gerhard and Polden, Alexander},
      title = {Geometric evolution equations for hypersurfaces},
      booktitle = {Calculus of Variations and Geometric Evolution Problems},
      venue = {{C}etraro, 1996},
      series = {Lecture Notes in Math.},
      volume = {1713},
      pages = {45--84},
      publisher = {Springer-Verlag},
      year = {1999},
      mrclass = {53C44 (35K55 49Q05)},
      mrnumber = {1731639},
      mrreviewer = {John Urbas},
      doi = {10.1007/BFb0092669},
      address = {New York},
      zblnumber = {0942.35047},
      }
  • [HS1] Go to document G. Huisken and C. Sinestrari, "Convexity estimates for mean curvature flow and singularities of mean convex surfaces," Acta Math., vol. 183, iss. 1, pp. 45-70, 1999.
    @article{HS1, mrkey = {1719551},
      author = {Huisken, Gerhard and Sinestrari, Carlo},
      title = {Convexity estimates for mean curvature flow and singularities of mean convex surfaces},
      journal = {Acta Math.},
      fjournal = {Acta Mathematica},
      volume = {183},
      year = {1999},
      number = {1},
      pages = {45--70},
      issn = {0001-5962},
      coden = {ACMAA8},
      mrclass = {53C44 (35K55)},
      mrnumber = {1719551},
      mrreviewer = {Ben Andrews},
      doi = {10.1007/BF02392946},
      zblnumber = {0992.53051},
      }
  • [HS2] Go to document G. Huisken and C. Sinestrari, "Mean curvature flow singularities for mean convex surfaces," Calc. Var. Partial Differential Equations, vol. 8, iss. 1, pp. 1-14, 1999.
    @article{HS2, mrkey = {1666878},
      author = {Huisken, Gerhard and Sinestrari, Carlo},
      title = {Mean curvature flow singularities for mean convex surfaces},
      journal = {Calc. Var. Partial Differential Equations},
      fjournal = {Calculus of Variations and Partial Differential Equations},
      volume = {8},
      year = {1999},
      number = {1},
      pages = {1--14},
      issn = {0944-2669},
      mrclass = {58E12 (35K55 53A10)},
      mrnumber = {1666878},
      mrreviewer = {John Urbas},
      doi = {10.1007/s005260050113},
      zblnumber = {0992.53052},
      }
  • [I1] Go to document T. Ilmanen, Singularities of Mean Curvature Flow of Surfaces, 1995.
    @misc{I1,
      author = {Ilmanen, Tom},
      title = {Singularities of Mean Curvature Flow of Surfaces},
      year = {1995},
      note = {preprint},
      url = {http://www.math.ethz.ch/~ilmanen/papers/pub.html},
      }
  • [K] Go to document O. D. Kellogg, "On bounded polynomials in several variables," Math. Z., vol. 27, iss. 1, pp. 55-64, 1928.
    @article{K, mrkey = {1544896},
      author = {Kellogg, O. D.},
      title = {On bounded polynomials in several variables},
      journal = {Math. Z.},
      fjournal = {Mathematische Zeitschrift},
      volume = {27},
      year = {1928},
      number = {1},
      pages = {55--64},
      issn = {0025-5874},
      coden = {MAZEAX},
      mrclass = {Contributed Item},
      mrnumber = {1544896},
      doi = {10.1007/BF01171085},
      jfmnumber = {53.0082.03},
     }
  • [L] S. Łojasiewicz, Ensembles semi-analytiques, 1965.
    @misc{L,
      author = {{\L}ojasiewicz, S.},
      title = {Ensembles semi-analytiques},
      year = {1965},
      note = {IHES notes},
      }
  • [M] Go to document W. W. Mullins, "Two-dimensional motion of idealized grain boundaries," J. Appl. Phys., vol. 27, pp. 900-904, 1956.
    @article{M, mrkey = {0078836},
      author = {Mullins, W. W.},
      title = {Two-dimensional motion of idealized grain boundaries},
      journal = {J. Appl. Phys.},
      volume = {27},
      year = {1956},
      pages = {900--904},
      mrclass = {76.0X},
      mrnumber = {0078836},
      zblnumber = {0112.23801},
      doi = {10.1063/1.1722511},
      }
  • [N] J. von Neumann, ," in Metal Interfaces, Herring, C., Ed., Cleveland, OH: Amer. Soc. for Metals, 1952, pp. 108-110.
    @incollection{N,
      author = {von Neumann, J.},
      booktitle = {Metal Interfaces},
      pages = {108--110},
      publisher = {Amer. Soc. for Metals},
      address = {Cleveland, OH},
      year = {1952},
      editor = {Herring, C.},
      }
  • [Sc] Go to document F. Schulze, "Uniqueness of compact tangent flows in mean curvature flow," J. Reine Angew. Math., vol. 690, pp. 163-172, 2014.
    @article{Sc, mrkey = {3200339},
      author = {Schulze, Felix},
      title = {Uniqueness of compact tangent flows in mean curvature flow},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      volume = {690},
      year = {2014},
      pages = {163--172},
      issn = {0075-4102},
      mrclass = {53C44},
      mrnumber = {3200339},
      mrreviewer = {Xusheng Liu},
      doi = {10.1515/crelle-2012-0070},
      zblnumber = {1290.53066},
      }
  • [Se] Go to document N. Sesum, "Rate of convergence of the mean curvature flow," Comm. Pure Appl. Math., vol. 61, iss. 4, pp. 464-485, 2008.
    @article{Se, mrkey = {2383930},
      author = {Sesum, Natasa},
      title = {Rate of convergence of the mean curvature flow},
      journal = {Comm. Pure Appl. Math.},
      fjournal = {Communications on Pure and Applied Mathematics},
      volume = {61},
      year = {2008},
      number = {4},
      pages = {464--485},
      issn = {0010-3640},
      coden = {CPAMA},
      mrclass = {35K55 (35B40 35B65 53A07)},
      mrnumber = {2383930},
      mrreviewer = {Matteo Novaga},
      doi = {10.1002/cpa.20209},
      zblnumber = {1143.53066},
      }
  • [Si1] Go to document L. Simon, "Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems," Ann. of Math., vol. 118, iss. 3, pp. 525-571, 1983.
    @article{Si1, mrkey = {0727703},
      author = {Simon, Leon},
      title = {Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems},
      journal = {Ann. of Math.},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {118},
      year = {1983},
      number = {3},
      pages = {525--571},
      issn = {0003-486X},
      coden = {ANMAAH},
      mrclass = {58G11 (35B40 49F99 58E20)},
      mrnumber = {0727703},
      mrreviewer = {Helmut Kaul},
      doi = {10.2307/2006981},
      zblnumber = {0549.35071},
      }
  • [Si2] L. Simon, "A general asymptotic decay lemma for elliptic problems," in Handbook of Geometric Analysis. No. 1, Somerville, MA: Int. Press, 2008, vol. 7, pp. 381-411.
    @incollection{Si2, mrkey = {2483370},
      author = {Simon, Leon},
      title = {A general asymptotic decay lemma for elliptic problems},
      booktitle = {Handbook of Geometric Analysis. {N}o. 1},
      series = {Adv. Lect. Math. (ALM)},
      volume = {7},
      pages = {381--411},
      publisher = {Int. Press},
      address = {Somerville, MA},
      year = {2008},
      mrclass = {35B40 (35J20 53A10)},
      mrnumber = {2483370},
      zblnumber = {1159.53004},
      }
  • [Si3] Go to document L. Simon, "Rectifiability of the singular set of energy minimizing maps," Calc. Var. Partial Differential Equations, vol. 3, iss. 1, pp. 1-65, 1995.
    @article{Si3, mrkey = {1384836},
      author = {Simon, Leon},
      title = {Rectifiability of the singular set of energy minimizing maps},
      journal = {Calc. Var. Partial Differential Equations},
      fjournal = {Calculus of Variations and Partial Differential Equations},
      volume = {3},
      year = {1995},
      number = {1},
      pages = {1--65},
      issn = {0944-2669},
      mrclass = {49Q20 (58E15)},
      mrnumber = {1384836},
      mrreviewer = {J. E. Brothers},
      doi = {10.1007/BF01190891},
      zblnumber = {0818.49023},
      }
  • [Si4] Go to document L. Simon, ," in Theorems on Regularity and Singularity of Energy Minimizing Maps, Basel: Birkhäuser Verlag, 1996, p. viii.
    @incollection{Si4,
      author = {Simon, Leon},
      booktitle = {{T}heorems on {R}egularity and {S}ingularity of {E}nergy {M}inimizing {M}aps},
      series = {Lectures in Mathematics ETH Zürich},
      note = {Based on lecture notes by Norbert Hungerb{ü}hler},
      publisher = {Birkhäuser Verlag},
      address = {Basel},
      year = {1996},
      pages = {viii+152},
      mrnumber = {1399562},
      zblnumber = {0864.58015},
      doi = {10.1007/978-3-0348-9193-6},
      }
  • [Si5] L. Simon, "Rectifiability of the singular sets of multiplicity $1$ minimal surfaces and energy minimizing maps," in Surveys in Differential Geometry, Vol. II, Cambridge, MA: Int. Press, 1995, pp. 246-305.
    @incollection{Si5, mrkey = {1375258},
      author = {Simon, Leon},
      title = {Rectifiability of the singular sets of multiplicity {$1$} minimal surfaces and energy minimizing maps},
      booktitle = {Surveys in Differential Geometry, {V}ol. {II}},
      venue = {{C}ambridge, {MA},
      1993},
      pages = {246--305},
      publisher = {Int. Press},
      address = {Cambridge, MA},
      year = {1995},
      mrclass = {49Q05 (58E12)},
      mrnumber = {1375258},
      mrreviewer = {Martin Fuchs},
      zblnumber = {0874.49033},
     }
  • [SS] Go to document H. M. Soner and P. E. Souganidis, "Singularities and uniqueness of cylindrically symmetric surfaces moving by mean curvature," Comm. Partial Differential Equations, vol. 18, iss. 5-6, pp. 859-894, 1993.
    @article{SS, mrkey = {1218522},
      author = {Soner, H. M. and Souganidis, P. E.},
      title = {Singularities and uniqueness of cylindrically symmetric surfaces moving by mean curvature},
      journal = {Comm. Partial Differential Equations},
      fjournal = {Communications in Partial Differential Equations},
      volume = {18},
      year = {1993},
      number = {5-6},
      pages = {859--894},
      issn = {0360-5302},
      coden = {CPDIDZ},
      mrclass = {53A10 (35K15)},
      mrnumber = {1218522},
      mrreviewer = {Li Ma},
      doi = {10.1080/03605309308820954},
      zblnumber = {0804.53006},
      }
  • [Su] T. Sutoki, "On the mechanism of crystal growth by annealing," Scientific Reports of Tohoku, Imperial University, vol. 17, pp. 857-876, 1928.
    @article{Su,
      author = {Sutoki, T.},
      title = {On the mechanism of crystal growth by annealing},
      journal = {Scientific Reports of Tohoku, Imperial University},
      year = {1928},
      volume = {17},
      pages = {857--876},
      }
  • [W1] Go to document B. White, "The nature of singularities in mean curvature flow of mean-convex sets," J. Amer. Math. Soc., vol. 16, iss. 1, pp. 123-138, 2003.
    @article{W1, mrkey = {1937202},
      author = {White, Brian},
      title = {The nature of singularities in mean curvature flow of mean-convex sets},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {16},
      year = {2003},
      number = {1},
      pages = {123--138},
      issn = {0894-0347},
      mrclass = {53C44 (49Q20)},
      mrnumber = {1937202},
      mrreviewer = {Shu-Yu Hsu},
      doi = {10.1090/S0894-0347-02-00406-X},
      zblnumber = {1027.53078},
      }
  • [W2] B. White, "Evolution of curves and surfaces by mean curvature," in Proceedings of the International Congress of Mathematicians, Vol. I, Beijing, 2002, pp. 525-538.
    @inproceedings{W2, mrkey = {1989203},
      author = {White, Brian},
      title = {Evolution of curves and surfaces by mean curvature},
      booktitle = {Proceedings of the {I}nternational {C}ongress of {M}athematicians, {V}ol. {I}},
      venue = {{B}eijing, 2002},
      pages = {525--538},
      publisher = {Higher Ed. Press},
      address = {Beijing},
      year = {2002},
      mrclass = {53C44},
      mrnumber = {1989203},
      mrreviewer = {Tommaso Pacini},
      zblnumber = {1036.53045},
      }
  • [W3] Go to document B. White, "A local regularity theorem for mean curvature flow," Ann. of Math., vol. 161, iss. 3, pp. 1487-1519, 2005.
    @article{W3, mrkey = {2180405},
      author = {White, Brian},
      title = {A local regularity theorem for mean curvature flow},
      journal = {Ann. of Math.},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {161},
      year = {2005},
      number = {3},
      pages = {1487--1519},
      issn = {0003-486X},
      coden = {ANMAAH},
      mrclass = {53C44},
      mrnumber = {2180405},
      mrreviewer = {James McCoy},
      doi = {10.4007/annals.2005.161.1487},
      zblnumber = {1091.53045},
      }
  • [Br] S. Brendle, An inscribed radius estimate for mean curvature flow in Riemannian manifolds.
    @misc{Br,
      author={Brendle, S.},
      TITLE={An inscribed radius estimate for mean curvature flow in {R}iemannian manifolds},
      ARXIV={1310.3439},
     }
  • [T] Go to document J. E. Taylor, "Regularity of the singular sets of two-dimensional area-minimizing flat chains modulo $3$ in $R^{3}$," Invent. Math., vol. 22, pp. 119-159, 1973.
    @article{T, mrkey = {0333903},
      author = {Taylor, Jean E.},
      title = {Regularity of the singular sets of two-dimensional area-minimizing flat chains modulo {$3$} in {$R\sp{3}$}},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {22},
      year = {1973},
      pages = {119--159},
      issn = {0020-9910},
      mrclass = {49F22},
      mrnumber = {0333903},
      mrreviewer = {J. E. Brothers},
      doi = {10.1007/BF01392299},
      zblnumber = {0278.49046},
     }
  • [W4] Go to document B. White, "The mathematics of F. J. Almgren, Jr.," J. Geom. Anal., vol. 8, iss. 5, pp. 681-702, 1998.
    @article{W4, mrkey = {1731057},
      author = {White, Brian},
      title = {The mathematics of {F}. {J}. {A}lmgren, {J}r.},
      journal = {J. Geom. Anal.},
      fjournal = {The Journal of Geometric Analysis},
      volume = {8},
      year = {1998},
      number = {5},
      pages = {681--702},
      issn = {1050-6926},
      mrclass = {01A70 (01A60 49-03 53-03 58-03)},
      mrnumber = {1731057},
      doi = {10.1007/BF02922665},
      zblnumber = {0955.01020},
     }

Authors

Tobias Holck Colding

Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139

William P. Minicozzi II

Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139