Mutations of puzzles and equivariant cohomology of two-step flag varieties

Abstract

We introduce a mutation algorithm for puzzles that is a three-direction analogue of the classical jeu de taquin algorithm for semistandard tableaux. We apply this algorithm to prove our conjectured puzzle formula for the equivariant Schubert structure constants of two-step flag varieties. This formula gives an expression for the structure constants that is positive in the sense of Graham. Thanks to the equivariant version of the `quantum equals classical’ result, our formula specializes to a Littlewood-Richardson rule for the equivariant quantum cohomology of Grassmannians.

Note: To view the article, click on the URL link for the DOI number.

  • [andersen.jantzen.ea:representations] H. H. Andersen, J. C. Jantzen, and W. Soergel, Representations of Quantum groups at a $p$-th Root of Unity and of Semisimple Groups in Characteristic $p$: Independence of $p$, , 1994, vol. 220.
    @book{andersen.jantzen.ea:representations, mrkey = {1272539},
      author = {Andersen, H. H. and Jantzen, J. C. and Soergel, W.},
      title = {Representations of Quantum groups at a {$p$}-th Root of Unity and of Semisimple Groups in Characteristic {$p$}: Independence of {$p$}},
      series = {Astérisque},
      fjournal = {Astérisque},
      volume = {220},
      year = {1994},
      pages = {321},
      issn = {0303-1179},
      mrclass = {20G05 (17B37 17B45)},
      mrnumber = {1272539},
      mrreviewer = {Jian-Pan Wang},
      zblnumber = {0802.17009},
      }
  • [anderson.fulton:equivariant] Go to document D. Anderson and W. Fulton, Equivariant Cohomology in Algebraic Geometry.
    @misc{anderson.fulton:equivariant,
      author = {Anderson, D. and Fulton, W.},
      title = {Equivariant {C}ohomology in {A}lgebraic {G}eometry},
      note = {book in preparation, based on Eilenberg lectures, Columbia University, Spring 2007},
      url = {http://people.math.osu.edu/anderson.2804/eilenberg/},
      }
  • [beazley.bertiger.ea:rim-hook] E. Beazley, A. Bertiger, and K. Taipale, Equivariant quantum cohomology of the Grassmannian via the rim hook rule, 2014.
    @misc{beazley.bertiger.ea:rim-hook,
      author = {Beazley, E. and Bertiger, A. and Taipale, K.},
      title = {Equivariant quantum cohomology of the {G}rassmannian via the rim hook rule},
      year = {2014},
      arxiv = {1403.6218},
      }
  • [billey:kostant] Go to document S. C. Billey, "Kostant polynomials and the cohomology ring for $G/B$," Proc. Nat. Acad. Sci. U.S.A., vol. 94, iss. 1, pp. 29-32, 1997.
    @article{billey:kostant, mrkey = {1425869},
      author = {Billey, Sara C.},
      title = {Kostant polynomials and the cohomology ring for {$G/B$}},
      journal = {Proc. Nat. Acad. Sci. U.S.A.},
      fjournal = {Proceedings of the National Academy of Sciences of the United States of America},
      volume = {94},
      year = {1997},
      number = {1},
      pages = {29--32},
      issn = {0027-8424},
      coden = {PNASA6},
      mrclass = {14M15 (05E15)},
      mrnumber = {1425869},
      mrreviewer = {Venkatramani Lakshmibai},
      doi = {10.1073/pnas.94.1.29},
      zblnumber = {0878.17002},
      }
  • [buch:3step] A. S. Buch, On the puzzle conjecture for three-step flag manifolds.
    @misc{buch:3step,
      author = {Buch, A. S.},
      title = {On the puzzle conjecture for three-step flag manifolds},
      note = {in preparation},
      }
  • [buch:saturation] A. S. Buch, "The saturation conjecture (after A. Knutson and T. Tao)," Enseign. Math., vol. 46, iss. 1-2, pp. 43-60, 2000.
    @article{buch:saturation, mrkey = {1769536},
      author = {Buch, Anders Skovsted},
      title = {The saturation conjecture (after {A}. {K}nutson and {T}. {T}ao)},
      note = {with an appendix by William Fulton},
      journal = {Enseign. Math.},
      fjournal = {L'Enseignement Mathématique. Revue Internationale. IIe Série},
      volume = {46},
      year = {2000},
      number = {1-2},
      pages = {43--60},
      issn = {0013-8584},
      coden = {ENMAAR},
      mrclass = {05E15 (20G05 52B20)},
      mrnumber = {1769536},
      mrreviewer = {Michel Brion},
      zblnumber = {0979.20041},
      }
  • [buch:quantum] Go to document A. S. Buch, "Quantum cohomology of Grassmannians," Compositio Math., vol. 137, iss. 2, pp. 227-235, 2003.
    @article{buch:quantum, mrkey = {1985005},
      author = {Buch, Anders Skovsted},
      title = {Quantum cohomology of {G}rassmannians},
      journal = {Compositio Math.},
      fjournal = {Compositio Mathematica},
      volume = {137},
      year = {2003},
      number = {2},
      pages = {227--235},
      issn = {0010-437X},
      coden = {CMPMAF},
      mrclass = {14N35 (05E05 14M15)},
      mrnumber = {1985005},
      mrreviewer = {Harry Tamvakis},
      doi = {10.1023/A:1023908007545},
      ZBLNUMBER = {1050.14053},
     }
  • [buch.kresch.ea:puzzle] A. S. Buch, A. Kresch, K. Purbhoo, and H. Tamvakis, The puzzle conjecture for the cohomology of two-step flag manifolds, 2014.
    @misc{buch.kresch.ea:puzzle,
      author = {Buch, Anders Skovsted and Kresch, Andrew and Purbhoo, K. and Tamvakis, Harry},
      title = {The puzzle conjecture for the cohomology of two-step flag manifolds},
      year = {2014},
      arxiv = {1401.1725},
      }
  • [buch.kresch.ea:gromov-witten] Go to document A. S. Buch, A. Kresch, and H. Tamvakis, "Gromov-Witten invariants on Grassmannians," J. Amer. Math. Soc., vol. 16, iss. 4, pp. 901-915, 2003.
    @article{buch.kresch.ea:gromov-witten, mrkey = {1992829},
      author = {Buch, Anders Skovsted and Kresch, Andrew and Tamvakis, Harry},
      title = {Gromov-{W}itten invariants on {G}rassmannians},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {16},
      year = {2003},
      number = {4},
      pages = {901--915},
      issn = {0894-0347},
      mrclass = {14N35 (14M15)},
      mrnumber = {1992829},
      mrreviewer = {Andreas Gathmann},
      doi = {10.1090/S0894-0347-03-00429-6},
      zblnumber = {1063.53090},
      }
  • [buch.mihalcea:quantum] Go to document A. S. Buch and L. C. Mihalcea, "Quantum $K$-theory of Grassmannians," Duke Math. J., vol. 156, iss. 3, pp. 501-538, 2011.
    @article{buch.mihalcea:quantum, mrkey = {2772069},
      author = {Buch, Anders S. and Mihalcea, Leonardo C.},
      title = {Quantum {$K$}-theory of {G}rassmannians},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {156},
      year = {2011},
      number = {3},
      pages = {501--538},
      issn = {0012-7094},
      coden = {DUMJAO},
      mrclass = {14N35 (14C35 14M15 19E08)},
      mrnumber = {2772069},
      mrreviewer = {Hsian-Hua Tseng},
      doi = {10.1215/00127094-2010-218},
      zblnumber = {1213.14103},
      }
  • [buch.mihalcea:curve] Go to document A. S. Buch and L. C. Mihalcea, "Curve neighborhoods of Schubert varieties," J. Differential Geom., vol. 99, pp. 255-283, 2015.
    @article{buch.mihalcea:curve, MRKEY={3302040},
      author = {Buch, Anders S. and Mihalcea, Leonardo C.},
      title = {Curve neighborhoods of {S}chubert varieties},
      year = {2015},
      JOURNAL={J. Differential Geom.},
      VOLUME={99},
      PAGES={255--283},
      MRNUMBER = {3302040},
      URL = {http://projecteuclid.org/euclid.jdg/1421415563},
     }
  • [chevalley:decompositions] C. Chevalley, "Sur les décompositions cellulaires des espaces $G/B$," in Algebraic Groups and their Generalizations: Classical Methods, Providence, RI: Amer. Math. Soc., 1994, vol. 56, pp. 1-23.
    @incollection{chevalley:decompositions, mrkey = {1278698},
      author = {Chevalley, C.},
      title = {Sur les décompositions cellulaires des espaces {$G/B$}},
      booktitle = {Algebraic Groups and their Generalizations: Classical Methods},
      venue = {{U}niversity {P}ark, {PA},
      1991},
      series = {Proc. Sympos. Pure Math.},
      volume = {56},
      pages = {1--23},
      publisher = {Amer. Math. Soc.},
      address = {Providence, RI},
      year = {1994},
      mrclass = {14M15 (01A75 20G15)},
      mrnumber = {1278698},
      mrreviewer = {James E. Humphreys},
      zblnumber = {0824.14042},
      }
  • [coskun:littlewood-richardson] Go to document I. Coskun, "A Littlewood-Richardson rule for two-step flag varieties," Invent. Math., vol. 176, iss. 2, pp. 325-395, 2009.
    @article{coskun:littlewood-richardson, mrkey = {2495766},
      author = {Coskun, Izzet},
      title = {A {L}ittlewood-{R}ichardson rule for two-step flag varieties},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {176},
      year = {2009},
      number = {2},
      pages = {325--395},
      issn = {0020-9910},
      coden = {INVMBH},
      mrclass = {14M15 (14N15 14N35)},
      mrnumber = {2495766},
      mrreviewer = {Toshiaki Maeno},
      doi = {10.1007/s00222-008-0165-3},
      zblnumber = {1213.14088},
      }
  • [coskun.vakil:geometric] Go to document I. Coskun and R. Vakil, "Geometric positivity in the cohomology of homogeneous spaces and generalized Schubert calculus," in Algebraic Geometry—Seattle 2005. Part 1, Providence, RI: Amer. Math. Soc., 2009, vol. 80, pp. 77-124.
    @incollection{coskun.vakil:geometric, mrkey = {2483933},
      author = {Coskun, Izzet and Vakil, Ravi},
      title = {Geometric positivity in the cohomology of homogeneous spaces and generalized {S}chubert calculus},
      booktitle = {Algebraic Geometry---{S}eattle 2005. {P}art 1},
      series = {Proc. Sympos. Pure Math.},
      volume = {80},
      pages = {77--124},
      publisher = {Amer. Math. Soc.},
      address = {Providence, RI},
      year = {2009},
      mrclass = {14N15 (05E10 14M15 14N10 14N35)},
      mrnumber = {2483933},
      mrreviewer = {Harry Tamvakis},
      doi = {10.1090/pspum/080.1/2483933},
      zblnumber = {1184.14080},
      }
  • [fulton:young] W. Fulton, Young Tableaux, Cambridge: Cambridge Univ. Press, 1997, vol. 35.
    @book{fulton:young, mrkey = {1464693},
      author = {Fulton, William},
      title = {Young Tableaux},
      series = {London Math. Soc. Student Texts},
      volume = {35},
      publisher = {Cambridge Univ. Press},
      address = {Cambridge},
      year = {1997},
      pages = {x+260},
      isbn = {0-521-56144-2; 0-521-56724-6},
      mrclass = {05E10 (05E05 05E15 14M15 20G05)},
      mrnumber = {1464693},
      mrreviewer = {Tadeusz J{ó}zefiak},
      zblnumber = {0878.14034},
      }
  • [fulton:intersection] Go to document W. Fulton, Intersection Theory, Second ed., New York: Springer-Verlag, 1998, vol. 2.
    @book{fulton:intersection, mrkey = {1644323},
      author = {Fulton, William},
      title = {Intersection Theory},
      series = {Ergeb. Math. Grenzgeb.},
      volume = {2},
      edition = {Second},
      publisher = {Springer-Verlag},
      year = {1998},
      pages = {xiv+470},
      isbn = {3-540-62046-X; 0-387-98549-2},
      mrclass = {14C17 (14-02)},
      mrnumber = {1644323},
      doi = {10.1007/978-1-4612-1700-8},
      address = {New York},
      zblnumber = {0885.14002},
      }
  • [fulton.pandharipande:notes] Go to document W. Fulton and R. Pandharipande, "Notes on stable maps and quantum cohomology," in Algebraic Geometry—Santa Cruz 1995, Providence, RI: Amer. Math. Soc., 1997, vol. 62, pp. 45-96.
    @incollection{fulton.pandharipande:notes, mrkey = {1492534},
      author = {Fulton, William and Pandharipande, R.},
      title = {Notes on stable maps and quantum cohomology},
      booktitle = {Algebraic Geometry---{S}anta {C}ruz 1995},
      series = {Proc. Sympos. Pure Math.},
      volume = {62},
      pages = {45--96},
      publisher = {Amer. Math. Soc.},
      address = {Providence, RI},
      year = {1997},
      mrclass = {14H10 (14E99 14N10)},
      mrnumber = {1492534},
      mrreviewer = {Alexandre I. Kabanov},
      doi = {10.1090/pspum/062.2/1492534},
      zblnumber = {0898.14018},
      }
  • [graham:positivity] Go to document W. Graham, "Positivity in equivariant Schubert calculus," Duke Math. J., vol. 109, iss. 3, pp. 599-614, 2001.
    @article{graham:positivity, mrkey = {1853356},
      author = {Graham, William},
      title = {Positivity in equivariant {S}chubert calculus},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {109},
      year = {2001},
      number = {3},
      pages = {599--614},
      issn = {0012-7094},
      coden = {DUMJAO},
      mrclass = {14M17 (14C17 14F43 14M15 17B37)},
      mrnumber = {1853356},
      mrreviewer = {E. Akyıldız},
      doi = {10.1215/S0012-7094-01-10935-6},
      zblnumber = {1069.14055},
      }
  • [kim:equivariant] Go to document B. Kim, "On equivariant quantum cohomology," Internat. Math. Res. Notices, vol. 1996, p. no. 17, 841-851.
    @article{kim:equivariant, mrkey = {1420551},
      author = {Kim, Bumsig},
      title = {On equivariant quantum cohomology},
      journal = {Internat. Math. Res. Notices},
      fjournal = {International Mathematics Research Notices},
      volume = {1996},
      SORTYEAR={1996},
      pages = {no.~17, 841--851},
      issn = {1073-7928},
      mrclass = {14D20 (57R91 58D10)},
      mrnumber = {1420551},
      mrreviewer = {Kai A. Behrend},
      doi = {10.1155/S1073792896000517},
      ZBLNUMBER = {0881.55007},
      }
  • [knutson:puzzles] A. Knutson, Puzzles, positroid varieties, and equivariant $K$-theory of Grassmannians.
    @misc{knutson:puzzles,
      author = {Knutson, Allen},
      title = {Puzzles, positroid varieties, and equivariant {$K$}-theory of {G}rassmannians},
      arxiv = {1008.4302},
      sortyear = {2015},
      }
  • [knutson:conjectural] A. Knutson, A conjectural rule for ${GL}_n$ Schubert calculus, 1999.
    @misc{knutson:conjectural,
      author = {Knutson, Allen},
      title = {A conjectural rule for ${GL}_n$ {S}chubert calculus},
      note = {unpublished manuscript},
      year = {1999},
      }
  • [knutson.purbhoo:product] Go to document A. Knutson and K. Purbhoo, "Product and puzzle formulae for ${ GL}_n$ Belkale-Kumar coefficients," Electron. J. Combin., vol. 18, iss. 1, p. 76, 2011.
    @article{knutson.purbhoo:product, mrkey = {2788693},
      author = {Knutson, Allen and Purbhoo, Kevin},
      title = {Product and puzzle formulae for {${\rm GL}\sb n$} {B}elkale-{K}umar coefficients},
      journal = {Electron. J. Combin.},
      fjournal = {Electronic Journal of Combinatorics},
      volume = {18},
      year = {2011},
      number = {1},
      pages = {Paper 76, 20},
      issn = {1077-8926},
      mrclass = {14M15 (05A15 05B45 05E99)},
      mrnumber = {2788693},
      mrreviewer = {David E. Anderson},
      zblnumber = {1232.05239},
      url = {http://www.combinatorics.org/ojs/index.php/eljc/article/view/v18i1p76},
      }
  • [knutson.tao:puzzles] Go to document A. Knutson and T. Tao, "Puzzles and (equivariant) cohomology of Grassmannians," Duke Math. J., vol. 119, iss. 2, pp. 221-260, 2003.
    @article{knutson.tao:puzzles, mrkey = {1997946},
      author = {Knutson, Allen and Tao, Terence},
      title = {Puzzles and (equivariant) cohomology of {G}rassmannians},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {119},
      year = {2003},
      number = {2},
      pages = {221--260},
      issn = {0012-7094},
      coden = {DUMJAO},
      mrclass = {14N15 (05E05 05E10 57R91 57S25)},
      mrnumber = {1997946},
      doi = {10.1215/S0012-7094-03-11922-5},
      zblnumber = {1064.14063},
      }
  • [knutson.tao.ea:honeycomb] Go to document A. Knutson, T. Tao, and C. Woodward, "The honeycomb model of ${ GL}_n(\Bbb C)$ tensor products. II. Puzzles determine facets of the Littlewood-Richardson cone," J. Amer. Math. Soc., vol. 17, iss. 1, pp. 19-48, 2004.
    @article{knutson.tao.ea:honeycomb, mrkey = {2015329},
      author = {Knutson, Allen and Tao, Terence and Woodward, Christopher},
      title = {The honeycomb model of {${\rm GL}\sb n(\Bbb C)$} tensor products. {II}. {P}uzzles determine facets of the {L}ittlewood-{R}ichardson cone},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {17},
      year = {2004},
      number = {1},
      pages = {19--48},
      issn = {0894-0347},
      mrclass = {14N15 (05E10 15A69 52B12)},
      mrnumber = {2015329},
      mrreviewer = {Anders Skovsted Buch},
      doi = {10.1090/S0894-0347-03-00441-7},
      zblnumber = {1043.05111},
      }
  • [kontsevich.manin:gromov-witten] Go to document M. Kontsevich and Y. Manin, "Gromov-Witten classes, quantum cohomology, and enumerative geometry," Comm. Math. Phys., vol. 164, iss. 3, pp. 525-562, 1994.
    @article{kontsevich.manin:gromov-witten, mrkey = {1291244},
      author = {Kontsevich, M. and Manin, Yu.},
      title = {Gromov-{W}itten classes, quantum cohomology, and enumerative geometry},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {164},
      year = {1994},
      number = {3},
      pages = {525--562},
      issn = {0010-3616},
      coden = {CMPHAY},
      mrclass = {14N10 (53C15 58D10 58F05)},
      mrnumber = {1291244},
      mrreviewer = {Dietmar A. Salamon},
      zblnumber = {0853.14020},
      doi = {10.1007/BF02101490},
      }
  • [kostant.kumar:nil*1] Go to document B. Kostant and S. Kumar, "The nil Hecke ring and cohomology of $G/P$ for a Kac-Moody group $G$," Adv. in Math., vol. 62, iss. 3, pp. 187-237, 1986.
    @article{kostant.kumar:nil*1, mrkey = {0866159},
      author = {Kostant, Bertram and Kumar, Shrawan},
      title = {The nil {H}ecke ring and cohomology of {$G/P$} for a {K}ac-{M}oody group {$G$}},
      journal = {Adv. in Math.},
      fjournal = {Advances in Mathematics},
      volume = {62},
      year = {1986},
      number = {3},
      pages = {187--237},
      issn = {0001-8708},
      coden = {ADMTA4},
      mrclass = {17B55 (22E65)},
      mrnumber = {0866159},
      mrreviewer = {H. H. Andersen},
      doi = {10.1016/0001-8708(86)90101-5},
      zblnumber = {0641.17008},
      }
  • [kreiman:equivariant] Go to document V. Kreiman, "Equivariant Littlewood-Richardson skew tableaux," Trans. Amer. Math. Soc., vol. 362, iss. 5, pp. 2589-2617, 2010.
    @article{kreiman:equivariant, mrkey = {2584612},
      author = {Kreiman, Victor},
      title = {Equivariant {L}ittlewood-{R}ichardson skew tableaux},
      journal = {Trans. Amer. Math. Soc.},
      fjournal = {Transactions of the American Mathematical Society},
      volume = {362},
      year = {2010},
      number = {5},
      pages = {2589--2617},
      issn = {0002-9947},
      coden = {TAMTAM},
      mrclass = {05E05 (05A19 05E10)},
      mrnumber = {2584612},
      mrreviewer = {Grant Walker},
      doi = {10.1090/S0002-9947-09-04862-4},
      zblnumber = {1205.05244},
      }
  • [mihalcea:equivariant] Go to document L. Mihalcea, "Equivariant quantum Schubert calculus," Adv. Math., vol. 203, iss. 1, pp. 1-33, 2006.
    @article{mihalcea:equivariant, mrkey = {2231042},
      author = {Mihalcea, Leonardo},
      title = {Equivariant quantum {S}chubert calculus},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {203},
      year = {2006},
      number = {1},
      pages = {1--33},
      issn = {0001-8708},
      coden = {ADMTA4},
      mrclass = {14N35 (14F43 14N15)},
      mrnumber = {2231042},
      mrreviewer = {Christian Ohn},
      doi = {10.1016/j.aim.2005.04.002},
      zblnumber = {1100.14045},
      }
  • [mihalcea:positivity] Go to document L. C. Mihalcea, "Positivity in equivariant quantum Schubert calculus," Amer. J. Math., vol. 128, iss. 3, pp. 787-803, 2006.
    @article{mihalcea:positivity, mrkey = {2230925},
      author = {Mihalcea, Leonardo Constantin},
      title = {Positivity in equivariant quantum {S}chubert calculus},
      journal = {Amer. J. Math.},
      fjournal = {American Journal of Mathematics},
      volume = {128},
      year = {2006},
      number = {3},
      pages = {787--803},
      issn = {0002-9327},
      coden = {AJMAAN},
      mrclass = {14N35 (14F43 14N15)},
      mrnumber = {2230925},
      mrreviewer = {Christian Ohn},
      doi = {10.1353/ajm.2006.0026},
      zblnumber = {1099.14047},
      }
  • [mihalcea:equivariant*1] Go to document L. C. Mihalcea, "On equivariant quantum cohomology of homogeneous spaces: Chevalley formulae and algorithms," Duke Math. J., vol. 140, iss. 2, pp. 321-350, 2007.
    @article{mihalcea:equivariant*1, mrkey = {2359822},
      author = {Mihalcea, Leonardo Constantin},
      title = {On equivariant quantum cohomology of \hbox{homogeneous} spaces: {C}hevalley formulae and algorithms},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {140},
      year = {2007},
      number = {2},
      pages = {321--350},
      issn = {0012-7094},
      coden = {DUMJAO},
      mrclass = {14N35 (05E99 14N15)},
      mrnumber = {2359822},
      mrreviewer = {Christopher T. Woodward},
      doi = {10.1215/S0012-7094-07-14024-9},
      zblnumber = {1135.14042},
      }
  • [molev:littlewood-richardson*1] Go to document A. I. Molev, "Littlewood-Richardson polynomials," J. Algebra, vol. 321, iss. 11, pp. 3450-3468, 2009.
    @article{molev:littlewood-richardson*1, mrkey = {2510056},
      author = {Molev, A. I.},
      title = {Littlewood-{R}ichardson polynomials},
      journal = {J. Algebra},
      fjournal = {Journal of Algebra},
      volume = {321},
      year = {2009},
      number = {11},
      pages = {3450--3468},
      issn = {0021-8693},
      coden = {JALGA4},
      mrclass = {05E05 (14N15 17B20)},
      mrnumber = {2510056},
      mrreviewer = {Grant Walker},
      doi = {10.1016/j.jalgebra.2008.02.034},
      zblnumber = {1169.05050},
      }
  • [molev.sagan:littlewood-richardson] Go to document A. I. Molev and B. E. Sagan, "A Littlewood-Richardson rule for factorial Schur functions," Trans. Amer. Math. Soc., vol. 351, iss. 11, pp. 4429-4443, 1999.
    @article{molev.sagan:littlewood-richardson, mrkey = {1621694},
      author = {Molev, Alexander I. and Sagan, Bruce E.},
      title = {A {L}ittlewood-{R}ichardson rule for factorial {S}chur functions},
      journal = {Trans. Amer. Math. Soc.},
      fjournal = {Transactions of the American Mathematical Society},
      volume = {351},
      year = {1999},
      number = {11},
      pages = {4429--4443},
      issn = {0002-9947},
      coden = {TAMTAM},
      mrclass = {05E05 (16S32 17B35)},
      mrnumber = {1621694},
      mrreviewer = {Grant Walker},
      doi = {10.1090/S0002-9947-99-02381-8},
      zblnumber = {0972.05053},
      }
  • [monk:geometry] Go to document D. Monk, "The geometry of flag manifolds," Proc. London Math. Soc., vol. 9, pp. 253-286, 1959.
    @article{monk:geometry, mrkey = {0106911},
      author = {Monk, D.},
      title = {The geometry of flag manifolds},
      journal = {Proc. London Math. Soc.},
      fjournal = {Proceedings of the London Mathematical Society. Third Series},
      volume = {9},
      year = {1959},
      pages = {253--286},
      issn = {0024-6115},
      mrclass = {14.00 (50.00)},
      mrnumber = {0106911},
      mrreviewer = {W. Burau},
      doi = {10.1112/plms/s3-9.2.253},
      zblnumber = {0096.36201},
      }
  • [ruan.tian:mathematical] Go to document Y. Ruan and G. Tian, "A mathematical theory of quantum cohomology," Math. Res. Lett., vol. 1, iss. 2, pp. 269-278, 1994.
    @article{ruan.tian:mathematical, mrkey = {1266766},
      author = {Ruan, Yongbin and Tian, Gang},
      title = {A mathematical theory of quantum cohomology},
      journal = {Math. Res. Lett.},
      fjournal = {Mathematical Research Letters},
      volume = {1},
      year = {1994},
      number = {2},
      pages = {269--278},
      issn = {1073-2780},
      mrclass = {58D15 (14N10 55N45 57R35 58F05)},
      mrnumber = {1266766},
      mrreviewer = {Bruce Hunt},
      doi = {10.4310/MRL.1994.v1.n2.a15},
      zblnumber = {0860.58006},
      }

Authors

Anders Skovsted Buch

Rutgers University, Piscataway, NJ