Spherical Hecke algebras for Kac-Moody groups over local fields

Abstract

We define the spherical Hecke algebra $\mathcal{H}$ for an almost split Kac-Moody group $G$ over a local non-archimedean field. We use the hovel $\mathscr I$ associated to this situation, which is the analogue of the Bruhat-Tits building for a reductive group. The stabilizer $K$ of a special point on the standard apartment plays the role of a maximal open compact subgroup. We can define $\mathcal{H}$ as the algebra of $K$-bi-invariant functions on $G$ with almost finite support. As two points in the hovel are not always in a same apartment, this support has to be in some large subsemigroup $G^+$ of $G$. We prove that the structure constants of $\mathcal{H}$ are polynomials in the cardinality of the residue field, with integer coefficients depending on the geometry of the standard apartment. We also prove the Satake isomorphism between $\mathcal{H}$ and the algebra of Weyl invariant elements in some completion of a Laurent polynomial algebra. In particular, $\mathcal{H}$ is always commutative. Actually, our results apply to abstract “locally finite” hovels, so that we can define the spherical algebra with unequal parameters.

  • [Sa63] Go to document I. Satake, "Theory of spherical functions on reductive algebraic groups over ${\mathfrak p}$-adic fields," Inst. Hautes Études Sci. Publ. Math., vol. 18, pp. 5-69, 1963.
    @article{Sa63,
      author = {Satake, Ichir{ô}},
      journal = {Inst. Hautes Études Sci. Publ. Math.},
      pages = {5--69},
      title = {Theory of spherical functions on reductive algebraic groups over {${\mathfrak p}$}-adic fields},
      volume = {18},
      year = {1963},
      issn = {0073-8301},
      url = {http://www.numdam.org/item?id=PMIHES_1963__18__5_0},
      }
  • [BrT72] Go to document F. Bruhat and J. Tits, "Groupes réductifs sur un corps local," Inst. Hautes Études Sci. Publ. Math., vol. 41, pp. 5-251, 1972.
    @article{BrT72,
      author = {Bruhat, F. and Tits, J.},
      journal = {Inst. Hautes Études Sci. Publ. Math.},
      pages = {5--251},
      title = {Groupes réductifs sur un corps local},
      volume = {41},
      year = {1972},
      issn = {0073-8301},
      url = {http://www.numdam.org/item?id=PMIHES_1972__41__5_0},
      }
  • [P06] Go to document J. Parkinson, "Buildings and Hecke algebras," J. Algebra, vol. 297, iss. 1, pp. 1-49, 2006.
    @article{P06,
      author = {Parkinson, James},
      journal = {J. Algebra},
      number = {1},
      pages = {1--49},
      title = {Buildings and {H}ecke algebras},
      volume = {297},
      year = {2006},
      doi = {10.1016/j.jalgebra.2005.08.036},
      issn = {0021-8693},
      }
  • [BrK10] Go to document A. Braverman and D. Kazhdan, "The spherical Hecke algebra for affine Kac-Moody groups I," Ann. of Math., vol. 174, iss. 3, pp. 1603-1642, 2011.
    @article{BrK10,
      author = {Braverman, Alexander and Kazhdan, David},
      journal = {Ann. of Math.},
      number = {3},
      pages = {1603--1642},
      title = {The spherical {H}ecke algebra for affine {K}ac-{M}oody groups {I}},
      volume = {174},
      year = {2011},
      doi = {10.4007/annals.2011.174.3.5},
      issn = {0003-486X},
      }
  • [BrK12] Go to document A. Braverman and D. Kazhdan, "Representation of affine Kac-Moody groups over local and global fields: a survey of some recent results," in European Congress of Mathematics, Zürich: Eur. Math. Soc., 2014, pp. 91-117.
    @incollection{BrK12, address = {Zürich},
      author = {Braverman, Alexander and Kazhdan, David},
      booktitle = {European Congress of Mathematics},
      pages = {91--117},
      publisher = {Eur. Math. Soc.},
      title = {Representation of affine {K}ac-{M}oody groups over local and global fields: a survey of some recent results},
      year = {2014},
      doi = {10.4171/120-1/6},
      }
  • [GR08] Go to document S. Gaussent and G. Rousseau, "Kac-Moody groups, hovels and Littelmann paths," Ann. Inst. Fourier $($Grenoble$)$, vol. 58, iss. 7, pp. 2605-2657, 2008.
    @article{GR08,
      author = {Gaussent, St{é}phane and Rousseau, Guy},
      journal = {Ann. Inst. Fourier $($Grenoble$)$},
      number = {7},
      pages = {2605--2657},
      title = {Kac-{M}oody groups, hovels and {L}ittelmann paths},
      volume = {58},
      year = {2008},
      doi = {10.1093/imrn/rnr108},
      issn = {0373-0956},
      }
  • [R12] G. Rousseau, Groupes de Kac-Moody déployés sur un corps local, 2 Masures ordonnées, 2010.
    @misc{R12,
      author = {Rousseau, Guy},
      title = {Groupes de {K}ac-{M}oody déployés sur un corps local, 2 {M}asures ordonnées},
      year = {2010},
      }
  • [R13] G. Rousseau, Almost split Kac-Moody groups over ultrametric fields, 2012.
    @misc{R13,
      author = {Rousseau, Guy},
      title = {Almost split {K}ac-{M}oody groups over ultrametric fields},
      year = {2012},
      }
  • [R11] Go to document G. Rousseau, "Masures affines," Pure Appl. Math. Q., vol. 7, pp. 859-921, 2011.
    @article{R11,
      author = {Rousseau, Guy},
      journal = {Pure Appl. Math. Q.},
      note = {special issue in honor of Jacques Tits},
      pages = {859--921},
      title = {Masures affines},
      volume = {7},
      year = {2011},
      doi = {10.4310/PAMQ.2011.v7.n3.a10},
      issn = {1558-8599},
      }
  • [P10] M. Patnaik, The Satake map for $p$-adic loop groups and the analogue of Mac Donald’s formula for spherical functions.
    @misc{P10,
      author = {Patnaik, Manish},
      key = {P10},
      note = {lecture Nancy, December 10 2010},
      title = {The {S}atake map for $p$-adic loop groups and the analogue of {M}ac {D}onald's formula for spherical functions},
      }
  • [BrKP12] A. Braverman, D. Kazhdan, and M. Patnaik, Iwahori-Hecke algebras for $p$-adic loop groups.
    @misc{BrKP12,
      author = {Braverman, Alexander and Kazhdan, David and Patnaik, Manish},
      title = {Iwahori-{H}ecke algebras for $p$-adic loop groups},
      }
  • [BrGKP13] Go to document A. Braverman, H. Garland, D. Kazhdan, and M. Patnaik, "An affine Gindikin-Karpelevich formula," in Perspectives in Representation Theory, Etingof, P., Khovanov, M., and Savage, A., Eds., Providence, RI: Amer. Math. Soc., 2014, vol. 610, pp. 43-64.
    @incollection{BrGKP13, address = {Providence, RI},
      author = {Braverman, Alexander and Garland, Howard and Kazhdan, David and Patnaik, Manish},
      booktitle = {Perspectives in Representation Theory},
      editor = {Etingof, P. and Khovanov, M. and Savage, A.},
      pages = {43--64},
      publisher = {Amer. Math. Soc.},
      series = {Contemp. Math.},
      title = {An affine {G}indikin-{K}arpelevich formula},
      volume = {610},
      year = {2014},
      doi = {10.1090/conm/610/12193},
      }
  • [MP89] Go to document R. V. Moody and A. Pianzola, "On infinite root systems," Trans. Amer. Math. Soc., vol. 315, iss. 2, pp. 661-696, 1989.
    @article{MP89,
      author = {Moody, R. V. and Pianzola, A.},
      journal = {Trans. Amer. Math. Soc.},
      number = {2},
      pages = {661--696},
      title = {On infinite root systems},
      volume = {315},
      year = {1989},
      doi = {10.2307/2001300},
      issn = {0002-9947},
      }
  • [MP95] R. V. Moody and A. Pianzola, Lie Algebras with Triangular Decompositions, New York: John Wiley & Sons, 1995.
    @book{MP95, address = {New York},
      author = {Moody, Robert V. and Pianzola, Arturo},
      pages = {xxii+685},
      publisher = {John Wiley \& Sons},
      series = {Canad. Math. Soc. Ser. Monogr. Adv. Texts},
      title = {Lie Algebras with Triangular Decompositions},
      year = {1995},
      isbn = {0-471-63304-6},
      }
  • [Ba96] N. Bardy, Systèms de Racines Infinis, Paris: Math. Soc. France, 1996, vol. 65.
    @book{Ba96, address = {Paris},
      author = {Bardy, Nicole},
      pages = {vi+188},
      publisher = {Math. Soc. France},
      series = {Mém. Soc. Math. Fr.},
      title = {Systèms de Racines Infinis},
      volume = {65},
      year = {1996},
      issn = {0249-633X},
      }
  • [K90] Go to document V. G. Kac, Infinite-Dimensional Lie Algebras, Third ed., Cambridge: Cambridge Univ. Press, 1990.
    @book{K90, address = {Cambridge},
      author = {Kac, Victor G.},
      edition = {Third},
      pages = {xxii+400},
      publisher = {Cambridge Univ. Press},
      title = {Infinite-Dimensional {L}ie Algebras},
      year = {1990},
      doi = {10.1017/CBO9780511626234},
      isbn = {0-521-37215-1; 0-521-46693-8},
      }
  • [Ch10] C. Charignon, Structures immobilières pour un groupe de Kac-Moody sur un corps local, 2010.
    @misc{Ch10,
      author = {Charignon, Cyril},
      title = {Structures immobilières pour un groupe de {K}ac-{M}oody sur un corps local},
      year = {2010},
      }
  • [Ch11] C. Charignon, Immeubles affines et groupes de Kac-Moody, masures bordées.
    @misc{Ch11,
      author = {Charignon, Cyril},
      note = {thèse Nancy, 2 juillet 2010, ISBN 978-613-1-58611-8 (Éditions universitaires européennes, Sarrebruck, 2011)},
      title = {Immeubles affines et groupes de {K}ac-{M}oody, masures bordées},
      }
  • [KM08] Go to document M. Kapovich and J. J. Millson, "A path model for geodesics in Euclidean buildings and its applications to representation theory," Groups Geom. Dyn., vol. 2, iss. 3, pp. 405-480, 2008.
    @article{KM08,
      author = {Kapovich, Michael and Millson, John J.},
      journal = {Groups Geom. Dyn.},
      number = {3},
      pages = {405--480},
      title = {A path model for geodesics in {E}uclidean buildings and its applications to representation theory},
      volume = {2},
      year = {2008},
      doi = {10.4171/GGD/46},
      issn = {1661-7207},
      }
  • [GL05] Go to document S. Gaussent and P. Littelmann, "LS galleries, the path model, and MV cycles," Duke Math. J., vol. 127, iss. 1, pp. 35-88, 2005.
    @article{GL05,
      author = {Gaussent, S. and Littelmann, P.},
      journal = {Duke Math. J.},
      number = {1},
      pages = {35--88},
      title = {L{S} galleries, the path model, and {MV} cycles},
      volume = {127},
      year = {2005},
      doi = {10.1215/S0012-7094-04-12712-5},
      issn = {0012-7094},
      }
  • [BCGR11] Go to document N. Bardy-Panse, C. Charignon, S. Gaussent, and G. Rousseau, "Une preuve plus immobilière du théorème de “saturation” de Kapovich-Leeb-Millson," Enseign. Math., vol. 59, iss. 1-2, pp. 3-37, 2013.
    @article{BCGR11,
      author = {Bardy-Panse, Nicole and Charignon, Cyril and Gaussent, St{é}phane and Rousseau, Guy},
      journal = {Enseign. Math.},
      key = {BCGR},
      number = {1-2},
      pages = {3--37},
      title = {Une preuve plus immobilière du théorème de ``saturation'' de {K}apovich-{L}eeb-{M}illson},
      volume = {59},
      year = {2013},
      doi = {10.4171/LEM/59-1-1},
      issn = {0013-8584},
      }
  • [KLM08] Go to document M. Kapovich, B. Leeb, and J. J. Millson, "The generalized triangle inequalities in symmetric spaces and buildings with applications to algebra," Mem. Amer. Math. Soc., vol. 192, iss. 896, p. viii, 2008.
    @article{KLM08,
      author = {Kapovich, Michael and Leeb, Bernhard and Millson, John J.},
      journal = {Mem. Amer. Math. Soc.},
      number = {896},
      pages = {viii+83},
      title = {The generalized triangle inequalities in symmetric spaces and buildings with applications to algebra},
      volume = {192},
      year = {2008},
      doi = {10.1090/memo/0896},
      isbn = {978-0-8218-4054-2},
      issn = {0065-9266},
      }
  • [T87] Go to document J. Tits, "Uniqueness and presentation of Kac-Moody groups over fields," J. Algebra, vol. 105, iss. 2, pp. 542-573, 1987.
    @article{T87,
      author = {Tits, Jacques},
      journal = {J. Algebra},
      number = {2},
      pages = {542--573},
      title = {Uniqueness and presentation of {K}ac-{M}oody groups over fields},
      volume = {105},
      year = {1987},
      doi = {10.1016/0021-8693(87)90214-6},
      issn = {0021-8693},
      }
  • [Re02] B. Rémy, Groupes de Kac-Moody déployés et Presque déployés, Paris: Math. Soc. France, 2002, vol. 277.
    @book{Re02, address = {Paris},
      author = {R{é}my, Bertrand},
      pages = {viii+348},
      publisher = {Math. Soc. France},
      series = {Astérisque},
      title = {Groupes de {K}ac-{M}oody déployés et Presque déployés},
      volume = {277},
      year = {2002},
      issn = {0303-1179},
      }
  • [KeR07] Go to document F. Kellil and G. Rousseau, "Opérateurs invariants sur certains immeubles affines de rang 2," Ann. Fac. Sci. Toulouse Math., vol. 16, iss. 3, pp. 591-610, 2007.
    @article{KeR07,
      author = {Kellil, Ferdaous and Rousseau, Guy},
      journal = {Ann. Fac. Sci. Toulouse Math.},
      number = {3},
      pages = {591--610},
      title = {Opérateurs invariants sur certains immeubles affines de rang 2},
      volume = {16},
      year = {2007},
      doi = {10.5802/afst.1160},
      issn = {0240-2963},
      }
  • [GL11] Go to document S. Gaussent and P. Littelmann, "One-skeleton galleries, the path model, and a generalization of Macdonald’s formula for Hall-Littlewood polynomials," Int. Math. Res. Not., vol. (2012), p. no. 12, 2649-2707.
    @article{GL11,
      author = {Gaussent, St{é}phane and Littelmann, Peter},
      journal = {Int. Math. Res. Not.},
      key = {GL12},
      pages = {no.~12, 2649--2707},
      title = {One-skeleton galleries, the path model, and a generalization of {M}acdonald's formula for {H}all-{L}ittlewood polynomials},
      volume = {(2012)},
      doi = {10.1093/imrn/rnr108},
      issn = {1073-7928},
      }
  • [Loo] Go to document E. Looijenga, "Invariant theory for generalized root systems," Invent. Math., vol. 61, iss. 1, pp. 1-32, 1980.
    @article{Loo,
      author = {Looijenga, Eduard},
      journal = {Invent. Math.},
      number = {1},
      pages = {1--32},
      title = {Invariant theory for generalized root systems},
      volume = {61},
      year = {1980},
      doi = {10.1007/BF01389892},
      issn = {0020-9910},
      }
  • [Ca79] P. Cartier, "Representations of $p$-adic groups: a survey," in Automorphic Forms, Representations and $L$-Functions, Part 1, Providence, R.I.: Amer. Math. Soc., 1979, vol. XXXIII, pp. 111-155.
    @incollection{Ca79, address = {Providence, R.I.},
      author = {Cartier, P.},
      booktitle = {Automorphic Forms, Representations and {$L$}-Functions, {P}art 1},
      pages = {111--155},
      publisher = {Amer. Math. Soc.},
      series = {Proc. Sympos. Pure Math.},
      title = {Representations of {$p$}-adic groups: a survey},
      volume = {XXXIII},
      year = {1979},
      }

Authors

Stéphane Gaussent

Université de Lyon, Institut Camille Jordan (UMR 5208), Université Jean Monnet, Saint-Etienne, F-42023, France

Guy Rousseau

Université de Lorraine, Institut Élie Cartan de Lorraine, UMR 7502 and
CNRS, Institut Élie Cartan de Lorraine, UMR 7502, Vandœuvre lès Nancy, F-54506, France