Stable logarithmic maps to Deligne–Faltings pairs I

Abstract

We introduce a new compactification of the space of relative stable maps. This approach uses logarithmic geoemetry in the sense of Kato-Fontaine-Illusie without taking expansions of the target. The underlying structures of the stable logarithmic maps are stable in the usual sense.

  • [LR] Go to document A. Li and Y. Ruan, "Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds," Invent. Math., vol. 145, iss. 1, pp. 151-218, 2001.
    @article{LR,
      author = {Li, An-Min and Ruan, Yongbin},
      journal = {Invent. Math.},
      number = {1},
      pages = {151--218},
      title = {Symplectic surgery and {G}romov-{W}itten invariants of {C}alabi-{Y}au 3-folds},
      volume = {145},
      year = {2001},
      doi = {10.1007/s002220100146},
      issn = {0020-9910},
      }
  • [IP1] Go to document E. Ionel and T. H. Parker, "Relative Gromov-Witten invariants," Ann. of Math., vol. 157, iss. 1, pp. 45-96, 2003.
    @article{IP1,
      author = {Ionel, Eleny-Nicoleta and Parker, Thomas H.},
      journal = {Ann. of Math.},
      number = {1},
      pages = {45--96},
      title = {Relative {G}romov-{W}itten invariants},
      volume = {157},
      year = {2003},
      doi = {10.4007/annals.2003.157.45},
      issn = {0003-486X},
      }
  • [Jun1] Go to document J. Li, "Stable morphisms to singular schemes and relative stable morphisms," J. Differential Geom., vol. 57, iss. 3, pp. 509-578, 2001.
    @article{Jun1,
      author = {Li, Jun},
      journal = {J. Differential Geom.},
      number = {3},
      pages = {509--578},
      title = {Stable morphisms to singular schemes and relative stable morphisms},
      volume = {57},
      year = {2001},
      issn = {0022-040X},
      url = {http://projecteuclid.org/euclid.jdg/1090348132},
      }
  • [Jun2] Go to document J. Li, "A degeneration formula of GW-invariants," J. Differential Geom., vol. 60, iss. 2, pp. 199-293, 2002.
    @article{Jun2,
      author = {Li, Jun},
      journal = {J. Differential Geom.},
      number = {2},
      pages = {199--293},
      title = {A degeneration formula of {GW}-invariants},
      volume = {60},
      year = {2002},
      issn = {0022-040X},
      url = {http://projecteuclid.org/euclid.jdg/1090351102},
      }
  • [Ra] Go to document Z. Ran, "The degree of a Severi variety," Bull. Amer. Math. Soc., vol. 17, iss. 1, pp. 125-128, 1987.
    @article{Ra,
      author = {Ran, Ziv},
      journal = {Bull. Amer. Math. Soc.},
      number = {1},
      pages = {125--128},
      title = {The degree of a {S}everi variety},
      volume = {17},
      year = {1987},
      doi = {10.1090/S0273-0979-1987-15534-0},
      issn = {0273-0979},
      }
  • [HM] Go to document J. Harris and D. Mumford, "On the Kodaira dimension of the moduli space of curves," Invent. Math., vol. 67, iss. 1, pp. 23-88, 1982.
    @article{HM,
      author = {Harris, Joe and Mumford, David},
      journal = {Invent. Math.},
      note = {with an appendix by William Fulton},
      number = {1},
      pages = {23--88},
      title = {On the {K}odaira dimension of the moduli space of curves},
      volume = {67},
      year = {1982},
      doi = {10.1007/BF01393371},
      issn = {0020-9910},
      }
  • [AF] D. Abramovich and B. Fantechi, Orbifold techniques in degeneration formulas, 2011.
    @misc{AF,
      author = {Abramovich, Dan and Fantechi, B.},
      title = {Orbifold techniques in degeneration formulas},
      year = {2011},
      }
  • [Mochizuki] Go to document S. Mochizuki, "The geometry of the compactification of the Hurwitz scheme," Publ. Res. Inst. Math. Sci., vol. 31, iss. 3, pp. 355-441, 1995.
    @article{Mochizuki,
      author = {Mochizuki, Shinichi},
      journal = {Publ. Res. Inst. Math. Sci.},
      number = {3},
      pages = {355--441},
      title = {The geometry of the compactification of the {H}urwitz scheme},
      volume = {31},
      year = {1995},
      doi = {10.2977/prims/1195164048},
      issn = {0034-5318},
      }
  • [Kim] B. Kim, "Logarithmic stable maps," in New Developments in Algebraic Geometry, Integrable Systems and Mirror Symmetry, Tokyo: Math. Soc. Japan, 2010, vol. 59, pp. 167-200.
    @incollection{Kim, address = {Tokyo},
      author = {Kim, Bumsig},
      booktitle = {New Developments in Algebraic Geometry, Integrable Systems and Mirror Symmetry},
      pages = {167--200},
      publisher = {Math. Soc. Japan},
      series = {Adv. Stud. Pure Math.},
      title = {Logarithmic stable maps},
      volume = {59},
      year = {2010},
      }
  • [LogStack] Go to document M. C. Olsson, "Logarithmic geometry and algebraic stacks," Ann. Sci. École Norm. Sup., vol. 36, iss. 5, pp. 747-791, 2003.
    @article{LogStack,
      author = {Olsson, Martin C.},
      journal = {Ann. Sci. École Norm. Sup.},
      number = {5},
      pages = {747--791},
      title = {Logarithmic geometry and algebraic stacks},
      volume = {36},
      year = {2003},
      doi = {10.1016/j.ansens.2002.11.001},
      issn = {0012-9593},
      }
  • [LogCot] Go to document M. C. Olsson, "The logarithmic cotangent complex," Math. Ann., vol. 333, iss. 4, pp. 859-931, 2005.
    @article{LogCot,
      author = {Olsson, Martin C.},
      journal = {Math. Ann.},
      number = {4},
      pages = {859--931},
      title = {The logarithmic cotangent complex},
      volume = {333},
      year = {2005},
      doi = {10.1007/s00208-005-0707-6},
      issn = {0025-5831},
      }
  • [LogDeg] Q. Chen, The degeneration formula for logarithmic expanded degenerations.
    @misc{LogDeg,
      author = {Chen, Q.},
      title = {The degeneration formula for logarithmic expanded degenerations},
      }
  • [Siebert] B. Siebert, Gromov-Witten invariants in relative and singular cases.
    @misc{Siebert,
      author = {Siebert, B.},
      note = {Lecture given in the workshop on {A}lgebraic {A}spects of {M}irror {S}ymmetry, Universit$\ddot{a}$t Kaiserslautern, Germany, Jun. 26 2001},
      title = {{G}romov-{W}itten invariants in relative and singular cases},
      }
  • [GS2] Go to document M. Gross and B. Siebert, "Logarithmic Gromov-Witten invariants," J. Amer. Math. Soc., vol. 26, iss. 2, pp. 451-510, 2013.
    @article{GS2,
      author = {Gross, Mark and Siebert, Bernd},
      journal = {J. Amer. Math. Soc.},
      number = {2},
      pages = {451--510},
      title = {Logarithmic {G}romov-{W}itten invariants},
      volume = {26},
      year = {2013},
      doi = {10.1090/S0894-0347-2012-00757-7},
      issn = {0894-0347},
      }
  • [Parker1] Go to document B. Parker, "Exploded manifolds," Adv. Math., vol. 229, iss. 6, pp. 3256-3319, 2012.
    @article{Parker1,
      author = {Parker, Brett},
      journal = {Adv. Math.},
      number = {6},
      pages = {3256--3319},
      title = {Exploded manifolds},
      volume = {229},
      year = {2012},
      doi = {10.1016/j.aim.2012.02.005},
      issn = {0001-8708},
      }
  • [Parker3] B. Parker, "Holomorphic curves in exploded manifolds: Compactness," , 2009.
    @article{Parker3,
      author = {Parker, Brett},
      title = {Holomorphic curves in exploded manifolds: Compactness},
      year = {2009},
      }
  • [Parker2] B. Parker, Holomorphic curves in exploded torus fibrations: Regularity, 2009.
    @misc{Parker2,
      author = {Parker, Brett},
      title = {Holomorphic curves in exploded torus fibrations: {R}egularity},
      year = {2009},
      }
  • [AC] D. Abramovich and Q. Chen, Stable logarithmic maps to Deligne–Faltings pairs II, 2011.
    @misc{AC,
      author = {Abramovich, Dan and Chen, Q.},
      title = {Stable logarithmic maps to {D}eligne--{F}altings pairs {II}},
      year = {2011},
      }
  • [Behrend-Fantechi] Go to document K. Behrend and B. Fantechi, "The intrinsic normal cone," Invent. Math., vol. 128, iss. 1, pp. 45-88, 1997.
    @article{Behrend-Fantechi,
      author = {Behrend, K. and Fantechi, B.},
      journal = {Invent. Math.},
      number = {1},
      pages = {45--88},
      title = {The intrinsic normal cone},
      volume = {128},
      year = {1997},
      doi = {10.1007/s002220050136},
      issn = {0020-9910},
      }
  • [Artin] Go to document M. Artin, "Versal deformations and algebraic stacks," Invent. Math., vol. 27, pp. 165-189, 1974.
    @article{Artin,
      author = {Artin, M.},
      journal = {Invent. Math.},
      pages = {165--189},
      title = {Versal deformations and algebraic stacks},
      volume = {27},
      year = {1974},
      doi = {10.1007/BF01390174},
      issn = {0020-9910},
      }
  • [Abramovich] Go to document D. Abramovich, "Subvarieties of semiabelian varieties," Compositio Math., vol. 90, iss. 1, pp. 37-52, 1994.
    @article{Abramovich,
      author = {Abramovich, Dan},
      journal = {Compositio Math.},
      number = {1},
      pages = {37--52},
      title = {Subvarieties of semiabelian varieties},
      volume = {90},
      year = {1994},
      issn = {0010-437X},
      url = {http://www.numdam.org/item?id=CM_1994__90_1_37_0},
      }
  • [SGA3] "Schémas en groupes. II: Groupes de type multiplicatif, et structure des schémas en groupes généraux," in Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3), Demazure, M. and Grothendieck, A., Eds., New York: Springer-Verlag, 1962/1964, vol. 152.
    @incollection{SGA3, address = {New York},
      booktitle = {Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3)},
      editor = {Demazure, M. and Grothendieck, A.},
      key = {SGA3},
      publisher = {Springer-Verlag},
      series = {Lecture Notes in Math.},
      title = {Schémas en groupes. {II}: {G}roupes de type multiplicatif, et structure des schémas en groupes généraux},
      volume = {152},
      year = {1962/1964},
      }
  • [LMB] G. Laumon and L. Moret-Bailly, Champs Algébriques, New York: Springer-Verlag, 2000, vol. 39.
    @book{LMB, address = {New York},
      author = {Laumon, G{é}rard and Moret-Bailly, Laurent},
      pages = {xii+208},
      publisher = {Springer-Verlag},
      series = {Ergeb. Math. Grenzgeb.},
      title = {Champs Algébriques},
      volume = {39},
      year = {2000},
      isbn = {3-540-65761-4},
      }
  • [AV] Go to document D. Abramovich and A. Vistoli, "Compactifying the space of stable maps," J. Amer. Math. Soc., vol. 15, iss. 1, pp. 27-75, 2002.
    @article{AV,
      author = {Abramovich, Dan and Vistoli, Angelo},
      journal = {J. Amer. Math. Soc.},
      number = {1},
      pages = {27--75},
      title = {Compactifying the space of stable maps},
      volume = {15},
      year = {2002},
      doi = {10.1090/S0894-0347-01-00380-0},
      issn = {0894-0347},
      }
  • [EGAIII(1)] A. Grothendieck, "Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I," Inst. Hautes Études Sci. Publ. Math., iss. 11, p. 167, 1961.
    @article{EGAIII(1),
      author = {Grothendieck, A.},
      journal = {Inst. Hautes Études Sci. Publ. Math.},
      number = {11},
      pages = {167},
      title = {\'{E}léments de géométrie algébrique. {III}. \'{E}tude cohomologique des faisceaux cohérents. {I}},
      year = {1961},
      }
  • [Ogus] Go to document A. Ogus, Lectures on logarithmic algebraic geometry, 2006.
    @misc{Ogus,
      author = {Ogus, A.},
      note = {TeXed notes},
      title = {Lectures on logarithmic algebraic geometry},
      year = {2006},
      url = {http://math.berkeley.edu/~ogus/preprints/log_book/ logbook.pdf},
      }
  • [Toric] W. Fulton, Introduction to Toric Varieties, Princeton, NJ: Princeton Univ. Press, 1993.
    @book{Toric, address = {Princeton, NJ},
      author = {Fulton, William},
      note = {The William H. Roever Lectures in Geometry},
      number = {131},
      pages = {xii+157},
      publisher = {Princeton Univ. Press},
      series = {Ann. of Math. Stud.},
      title = {Introduction to Toric Varieties},
      year = {1993},
      isbn = {0-691-00049-2},
      }
  • [HomStack] Go to document M. C. Olsson, "$\underline { Hom}$-stacks and restriction of scalars," Duke Math. J., vol. 134, iss. 1, pp. 139-164, 2006.
    @article{HomStack,
      author = {Olsson, Martin C.},
      journal = {Duke Math. J.},
      number = {1},
      pages = {139--164},
      title = {{$\underline {\rm Hom}$}-stacks and restriction of scalars},
      volume = {134},
      year = {2006},
      doi = {10.1215/S0012-7094-06-13414-2},
      issn = {0012-7094},
      }
  • [FP] Go to document W. Fulton and R. Pandharipande, "Notes on stable maps and quantum cohomology," in Algebraic Geometry—Santa Cruz 1995, Providence, RI: Amer. Math. Soc., 1997, vol. 62, pp. 45-96.
    @incollection{FP, address = {Providence, RI},
      author = {Fulton, William and Pandharipande, R.},
      booktitle = {Algebraic Geometry---{S}anta {C}ruz 1995},
      pages = {45--96},
      publisher = {Amer. Math. Soc.},
      series = {Proc. Sympos. Pure Math.},
      title = {Notes on stable maps and quantum cohomology},
      volume = {62},
      year = {1997},
      doi = {10.1090/pspum/062.2},
      }
  • [EHKV] Go to document D. Edidin, B. Hassett, A. Kresch, and A. Vistoli, "Brauer groups and quotient stacks," Amer. J. Math., vol. 123, iss. 4, pp. 761-777, 2001.
    @article{EHKV,
      author = {Edidin, Dan and Hassett, Brendan and Kresch, Andrew and Vistoli, Angelo},
      journal = {Amer. J. Math.},
      number = {4},
      pages = {761--777},
      title = {Brauer groups and quotient stacks},
      volume = {123},
      year = {2001},
      doi = {10.1353/ajm.2001.0024},
      issn = {0002-9327},
      }
  • [Keel-Mori] Go to document S. Keel and S. Mori, "Quotients by groupoids," Ann. of Math., vol. 145, iss. 1, pp. 193-213, 1997.
    @article{Keel-Mori,
      author = {Keel, Se{á}n and Mori, Shigefumi},
      journal = {Ann. of Math.},
      number = {1},
      pages = {193--213},
      title = {Quotients by groupoids},
      volume = {145},
      year = {1997},
      doi = {10.2307/2951828},
      issn = {0003-486X},
      }
  • [KKato] K. Kato, "Logarithmic structures of Fontaine-Illusie," in Algebraic Analysis, Geometry, and Number Theory, Baltimore, MD: Johns Hopkins Univ. Press, 1989, pp. 191-224.
    @incollection{KKato, address = {Baltimore, MD},
      author = {Kato, Kazuya},
      booktitle = {Algebraic Analysis, Geometry, and Number Theory},
      pages = {191--224},
      publisher = {Johns Hopkins Univ. Press},
      title = {Logarithmic structures of {F}ontaine-{I}llusie},
      year = {1989},
      }
  • [FKato] Go to document F. Kato, "Log smooth deformation and moduli of log smooth curves," Internat. J. Math., vol. 11, iss. 2, pp. 215-232, 2000.
    @article{FKato,
      author = {Kato, Fumiharu},
      journal = {Internat. J. Math.},
      number = {2},
      pages = {215--232},
      title = {Log smooth deformation and moduli of log smooth curves},
      volume = {11},
      year = {2000},
      doi = {10.1142/S0129167X0000012X},
      issn = {0129-167X},
      }
  • [LogCurve] Go to document M. C. Olsson, "(Log) twisted curves," Compos. Math., vol. 143, iss. 2, pp. 476-494, 2007.
    @article{LogCurve,
      author = {Olsson, Martin C.},
      journal = {Compos. Math.},
      number = {2},
      pages = {476--494},
      title = {({L}og) twisted curves},
      volume = {143},
      year = {2007},
      doi = {10.1112/S0010437X06002442},
      issn = {0010-437X},
      }
  • [LogSS] Go to document M. C. Olsson, "Universal log structures on semi-stable varieties," Tohoku Math. J., vol. 55, iss. 3, pp. 397-438, 2003.
    @article{LogSS,
      author = {Olsson, Martin C.},
      journal = {Tohoku Math. J.},
      number = {3},
      pages = {397--438},
      title = {Universal log structures on semi-stable varieties},
      volume = {55},
      year = {2003},
      doi = {10.2748/tmj/1113247481},
      issn = {0040-8735},
      }

Authors

Qile Chen

Columbia University, New York, NY