Residual automorphic forms and spherical unitary representations of exceptional groups

Abstract

Arthur has conjectured that the unitarity of a number of representations can be shown by finding appropriate automorphic realizations. This has been verified for classical groups by M\oe glin and for the exceptional Chevalley group $G_2$ by Kim. In this paper we extend their results on spherical representations to the remaining exceptional groups $E_6$, $E_7$, $E_8$, and $F_4$. In particular, we prove Arthur’s conjecture that the spherical constituent of an unramified principal series of a Chevalley group over any local field of characteristic zero is unitarizable if its Langlands parameter coincides with half the weighted marking of a coadjoint nilpotent orbit of the Langlands dual Lie algebra.

Computer code referenced in this paper is available for download at this location.

  • [fourauthors] J. Adams, M. van Leeuwen, P. Trapa, and D. A. Vogan Jr., Unitary representations of real reductive groups, 2012.
    @misc{fourauthors,
      author={Adams, J. and van Leeuwen, M. and Trapa, P. and Vogan Jr., David A.},
      TITLE={Unitary representations of real reductive groups},
      YEAR={2012},
      ARXIV={1212.2192},
     }
  • [Arthur] J. Arthur, "Unipotent automorphic representations: conjectures," in Orbites unipotentes et représentations, II, , 1989, vol. 171-172, pp. 13-71.
    @incollection{Arthur, MRKEY = {1021499},
      AUTHOR = {Arthur, James},
      TITLE = {Unipotent automorphic representations: conjectures},
      BOOKTITLE={Orbites unipotentes et repr{é}sentations, II},
      SERIES = {Astérisque},
      FJOURNAL = {Astérisque},
      VOLUME = {171-172},
      YEAR = {1989},
      PAGES = {13--71},
      ISSN = {0303-1179},
      MRCLASS = {22E50 (11F70)},
      MRNUMBER = {1021499},
      MRREVIEWER = {Marko Tadi{ć}},
      ZBLNUMBER = {0728.22014},
      }
  • [atlas] Go to document Atlas, Atlas of Lie Groups and Representations software.
    @misc{atlas,
      author={Atlas},
      TITLE={Atlas of Lie Groups and Representations software},
      URL={http://www.liegroups.org/},
     }
  • [BM1] Go to document D. Barbasch and A. Moy, "A unitarity criterion for $p$-adic groups," Invent. Math., vol. 98, iss. 1, pp. 19-37, 1989.
    @article {BM1, MRKEY = {1010153},
      AUTHOR = {Barbasch, Dan and Moy, Allen},
      TITLE = {A unitarity criterion for {$p$}-adic groups},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {98},
      YEAR = {1989},
      NUMBER = {1},
      PAGES = {19--37},
      ISSN = {0020-9910},
      CODEN = {INVMBH},
      MRCLASS = {22E50},
      MRNUMBER = {1010153},
      MRREVIEWER = {Marko Tadi{ć}},
      DOI = {10.1007/BF01388842},
      ZBLCOMMENT = {BIBPROC: YEAR doesn't match found ZBLNUMBER},
      ZBLNUMBER = {0676.22012},
      }
  • [bump] Go to document D. Bump, Automorphic Forms and Representations, Cambridge: Cambridge Univ. Press, 1997, vol. 55.
    @book {bump, MRKEY = {1431508},
      AUTHOR = {Bump, Daniel},
      TITLE = {Automorphic Forms and Representations},
      SERIES = {Cambridge Stud. Adv. Math.},
      VOLUME = {55},
      PUBLISHER = {Cambridge Univ. Press},
      ADDRESS = {Cambridge},
      YEAR = {1997},
      PAGES = {xiv+574},
      ISBN = {0-521-55098-X},
      MRCLASS = {11F70 (11F41 11R39 22E50 22E55)},
      MRNUMBER = {1431508},
      MRREVIEWER = {Solomon Friedberg},
      DOI = {10.1017/CBO9780511609572},
      ZBLNUMBER = {0911.11022},
      ZBLNUMBER = {0868.11022},
      }
  • [Collingwood] D. H. Collingwood and W. M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, New York: Van Nostrand Reinhold Co., 1993.
    @book {Collingwood, MRKEY = {1251060},
      AUTHOR = {Collingwood, David H. and McGovern, William M.},
      TITLE = {Nilpotent Orbits in Semisimple {L}ie Algebras},
      SERIES = {Van Nostrand Reinhold Math. Series},
      PUBLISHER = {Van Nostrand Reinhold Co.},
      ADDRESS = {New York},
      YEAR = {1993},
      PAGES = {xiv+186},
      ISBN = {0-534-18834-6},
      MRCLASS = {17-02 (17B20 17B25 22E60)},
      MRNUMBER = {1251060},
      MRREVIEWER = {Stephen Slebarski},
      ZBLNUMBER = {0972.17008},
      }
  • [GRS] Go to document D. Ginzburg, S. Rallis, and D. Soudry, "On the automorphic theta representation for simply laced groups," Israel J. Math., vol. 100, pp. 61-116, 1997.
    @article {GRS, MRKEY = {1469105},
      AUTHOR = {Ginzburg, David and Rallis, Stephen and Soudry, David},
      TITLE = {On the automorphic theta representation for simply laced groups},
      JOURNAL = {Israel J. Math.},
      FJOURNAL = {Israel Journal of Mathematics},
      VOLUME = {100},
      YEAR = {1997},
      PAGES = {61--116},
      ISSN = {0021-2172},
      CODEN = {ISJMAP},
      MRCLASS = {11F70 (22E45)},
      MRNUMBER = {1469105},
      MRREVIEWER = {Gordan Savin},
      DOI = {10.1007/BF02773635},
      ZBLNUMBER = {0881.11050},
      }
  • [GMRV] M. B. Green, S. D. Miller, J. G. Russo, and P. Vanhove, "Eisenstein series for higher-rank groups and string theory amplitudes," Commun. Number Theory Phys., vol. 4, iss. 3, pp. 551-596, 2010.
    @article {GMRV, MRKEY = {2771579},
      AUTHOR = {Green, Michael B. and Miller, Stephen D. and Russo, Jorge G. and Vanhove, Pierre},
      TITLE = {Eisenstein series for higher-rank groups and string theory amplitudes},
      JOURNAL = {Commun. Number Theory Phys.},
      FJOURNAL = {Communications in Number Theory and Physics},
      VOLUME = {4},
      YEAR = {2010},
      NUMBER = {3},
      PAGES = {551--596},
      ISSN = {1931-4523},
      MRCLASS = {81T30 (11M36)},
      MRNUMBER = {2771579},
      MRREVIEWER = {Sander Zwegers},
      ZBLNUMBER = {1218.83034},
      }
  • [GMV] M. B. Green, S. D. Miller, and P. Vanhove, Small representations, string instantons, and Fourier modes of Eisenstein series.
    @misc{GMV,
      author={Green, Michael B. and Miller, Stephen D. and Vanhove, Pierre},
      TITLE={Small representations, string instantons, and {F}ourier modes of {E}isenstein series},
      NOTE={with appendix ``Special unipotent representations'' by Dan Ciubotaru and Peter E. Trapa},
      ARXIV={1111.2983},
     }
  • [jacquet] Go to document H. Jacquet, "On the residual spectrum of ${ GL}(n)$," in Lie Group Representations, II, New York: Springer-Verlag, 1984, vol. 1041, pp. 185-208.
    @incollection {jacquet, MRKEY = {0748508},
      AUTHOR = {Jacquet, Herv{é}},
      TITLE = {On the residual spectrum of {${\rm GL}(n)$}},
      BOOKTITLE = {Lie Group Representations, {II}},
      VENUE={{C}ollege {P}ark, {M}d., 1982/1983},
      SERIES = {Lecture Notes in Math.},
      VOLUME = {1041},
      PAGES = {185--208},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {1984},
      MRCLASS = {22E55 (11F70)},
      MRNUMBER = {0748508},
      MRREVIEWER = {J. Szmidt},
      DOI = {10.1007/BFb0073148},
      ZBLNUMBER = {0539.22016},
      }
  • [Kim] Go to document H. H. Kim, "The residual spectrum of $G_2$," Canad. J. Math., vol. 48, iss. 6, pp. 1245-1272, 1996.
    @article {Kim, MRKEY = {1426903},
      AUTHOR = {Kim, Henry H.},
      TITLE = {The residual spectrum of {$G_2$}},
      JOURNAL = {Canad. J. Math.},
      FJOURNAL = {Canadian Journal of Mathematics. Journal Canadien de Mathématiques},
      VOLUME = {48},
      YEAR = {1996},
      NUMBER = {6},
      PAGES = {1245--1272},
      ISSN = {0008-414X},
      CODEN = {CJMAAB},
      MRCLASS = {11F70 (22E55)},
      MRNUMBER = {1426903},
      MRREVIEWER = {David Ginzburg},
      DOI = {10.4153/CJM-1996-066-3},
      ZBLNUMBER = {0879.11024},
      }
  • [Langlands] R. P. Langlands, On the Functional Equations Satisfied by Eisenstein Series, New York: Springer-Verlag, 1976, vol. 544.
    @book {Langlands, MRKEY = {0579181},
      AUTHOR = {Langlands, Robert P.},
      TITLE = {On the Functional Equations Satisfied by {E}isenstein Series},
      SERIES = {Lecture Notes in Math.},
      VOLUME={544},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {1976},
      PAGES = {v+337},
      MRCLASS = {22E55 (10C15 10D20 32N05)},
      MRNUMBER = {0579181},
      MRREVIEWER = {James G. Arthur},
      ZBLNUMBER = {0332.10018},
      }
  • [Moeglin] Go to document C. Moeglin, "Représentations unipotentes et formes automorphes de carré intégrable," Forum Math., vol. 6, iss. 6, pp. 651-744, 1994.
    @article {Moeglin, MRKEY = {1300285},
      AUTHOR = {M{\oe}glin, Colette},
      TITLE = {Représentations unipotentes et formes automorphes de carré intégrable},
      JOURNAL = {Forum Math.},
      FJOURNAL = {Forum Mathematicum},
      VOLUME = {6},
      YEAR = {1994},
      NUMBER = {6},
      PAGES = {651--744},
      ISSN = {0933-7741},
      CODEN = {FOMAEF},
      MRCLASS = {22E55 (11F70)},
      MRNUMBER = {1300285},
      MRREVIEWER = {Stephen Gelbart},
      DOI = {10.1515/form.1994.6.651},
      ZBLNUMBER = {0816.11034},
      }
  • [MoeglinWaldspurger] Go to document C. Moeglin and J. -L. Waldspurger, "Le spectre résiduel de ${ GL}(n)$," Ann. Sci. École Norm. Sup., vol. 22, iss. 4, pp. 605-674, 1989.
    @article {MoeglinWaldspurger, MRKEY = {1026752},
      AUTHOR = {M{\oe}glin, Colette and Waldspurger, J.-L.},
      TITLE = {Le spectre résiduel de {${\rm GL}(n)$}},
      JOURNAL = {Ann. Sci. École Norm. Sup.},
      FJOURNAL = {Annales Scientifiques de l'École Normale Supérieure. Quatrième Série},
      VOLUME = {22},
      YEAR = {1989},
      NUMBER = {4},
      PAGES = {605--674},
      ISSN = {0012-9593},
      CODEN = {ASENAH},
      MRCLASS = {22E55 (11F70 22E50)},
      MRNUMBER = {1026752},
      MRREVIEWER = {Stephen Gelbart},
      URL = {http://www.numdam.org/item?id=ASENS_1989_4_22_4_605_0},
      ZBLNUMBER = {0696.10023},
      }
  • [MWbook] Go to document C. Moeglin and J. -L. Waldspurger, Spectral Decomposition and Eisenstein Series, Cambridge: Cambridge Univ. Press, 1995.
    @book {MWbook, MRKEY = {1361168},
      AUTHOR = {M{\oe}glin, Colette and Waldspurger, J.-L.},
      TITLE = {Spectral Decomposition and {E}isenstein Series},
      SERIES = {Cambridge Tracts in Math.},
      NUMBER = {113},
      NOTE = {Une paraphrase de l'{É}criture [A paraphrase of Scripture]},
      PUBLISHER = {Cambridge Univ. Press},
      ADDRESS = {Cambridge},
      YEAR = {1995},
      PAGES = {xxviii+338},
      ISBN = {0-521-41893-3},
      MRCLASS = {11F70 (22E55)},
      MRNUMBER = {1361168},
      MRREVIEWER = {Joe Repka},
      DOI = {10.1017/CBO9780511470905},
      ZBLNUMBER = {0846.11032},
      }
  • [shahidi] F. Shahidi, Eisenstein Series and Automorphic $L$-Functions, Providence, RI: Amer. Math. Soc., 2010.
    @book {shahidi, MRKEY = {2683009},
      AUTHOR = {Shahidi, Freydoon},
      TITLE = {Eisenstein Series and Automorphic {$L$}-Functions},
      SERIES = {Amer. Math. Soc. Colloq. Publ.},
      NUMBER = {58},
      PUBLISHER = {Amer. Math. Soc.},
      ADDRESS = {Providence, RI},
      YEAR = {2010},
      PAGES = {vi+210},
      ISBN = {978-0-8218-4989-7},
      MRCLASS = {11F70 (11-02 11M36 11R42 22E50 22E55)},
      MRNUMBER = {2683009},
      MRREVIEWER = {M. Ram Murty},
      ZBLNUMBER = {1215.11054},
      }
  • [Speh] Go to document B. Speh, "The unitary dual of ${ Gl}(3,\,{\bf R})$ and ${ Gl}(4,\,{\bf R})$," Math. Ann., vol. 258, iss. 2, pp. 113-133, 1981/82.
    @article {Speh, MRKEY = {0641819},
      AUTHOR = {Speh, Birgit},
      TITLE = {The unitary dual of {${\rm Gl}(3,\,{\bf R})$} and {${\rm Gl}(4,\,{\bf R})$}},
      JOURNAL = {Math. Ann.},
      FJOURNAL = {Mathematische Annalen},
      VOLUME = {258},
      YEAR = {1981/82},
      NUMBER = {2},
      PAGES = {113--133},
      ISSN = {0025-5831},
      CODEN = {MAANA3},
      MRCLASS = {22E46},
      MRNUMBER = {0641819},
      MRREVIEWER = {Mogens Flensted-Jensen},
      DOI = {10.1007/BF01450529},
      ZBLCOMMENT = {BIBPROC: YEAR doesn't match found ZBLNUMBER},
      ZBLNUMBER = {0483.22005},
      }

Authors

Stephen D. Miller

Department of Mathematics
Hill Center-Busch Campus
Rutgers, The State University of New Jersey
110 Frelinghuysen Rd.
Piscataway, NJ 08854-8019