Divergent square averages

Abstract

In this paper we answer a question of J. Bourgain which was motivated by questions A. Bellow and H. Furstenberg. We show that the sequence $\{ n^{2}\}_{n=1}^{\infty}$ is $L^{1}$-universally bad. This implies that it is not true that given a dynamical system $(X ,\Sigma, \mu, T)$ and $f\in L^{1}(\mu)$, the ergodic means \[ \lim_{N\to \infty}\frac{1}N\sum _{n=1}^{N}f(T^{n^{2}}(x)) \] converge almost surely.

  • [[abm]] Go to document I. Assani, Z. Buczolich, and D. R. Mauldin, "An $L^1$ counting problem in ergodic theory," J. Anal. Math., vol. 95, pp. 221-241, 2005.
    @article {[abm], MRKEY = {2145565},
      AUTHOR = {Assani, Idris and Buczolich, Zolt{á}n and Mauldin, R. Daniel},
      TITLE = {An {$L\sp 1$} counting problem in ergodic theory},
      JOURNAL = {J. Anal. Math.},
      FJOURNAL = {Journal d'Analyse Mathématique},
      VOLUME = {95},
      YEAR = {2005},
      PAGES = {221--241},
      ISSN = {0021-7670},
      CODEN = {JOAMAV},
      MRCLASS = {37A05 (28D05 37A25 37A30)},
      MRNUMBER = {2006c:37002},
      MRREVIEWER = {Joseph Max Rosenblatt},
      DOI = {10.1007/BF02791503},
      ZBLNUMBER = {1110.28013},
      }
  • [[abm2]] I. Assani, Z. Buczolich, and D. R. Mauldin, "Counting and convergence in ergodic theory," Acta Univ. Carolin. Math. Phys., vol. 45, iss. 2, pp. 5-21, 2004.
    @article {[abm2], MRKEY = {2138271},
      AUTHOR = {Assani, Idris and Buczolich, Zolt{á}n and Mauldin, R. Daniel},
      TITLE = {Counting and convergence in ergodic theory},
      JOURNAL = {Acta Univ. Carolin. Math. Phys.},
      FJOURNAL = {Acta Universitatis Carolinae. Mathematica et Physica},
      VOLUME = {45},
      YEAR = {2004},
      NUMBER = {2},
      PAGES = {5--21},
      ISSN = {0001-7140},
      CODEN = {AUMMBZ},
      MRCLASS = {37A05 (28D05 47A35 60F99)},
      MRNUMBER = {2006a:37001},
      ZBLNUMBER = {1067.37001},
      }
  • [OW] A. Bellow, "Two problems," in Measure Theory, New York: Springer-Verlag, 1982, vol. 945.
    @incollection{OW,
      author={Bellow, A.},
      TITLE={Two problems},
      BOOKTITLE={Measure Theory},
      VENUE={Oberwolfach, June 21--27, 1981},
      SERIES={Lecture Notes in Math.},
      VOLUME={945},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR={1982},
      }
  • [B1] Go to document J. Bourgain, "Pointwise ergodic theorems for arithmetic sets," Inst. Hautes Études Sci. Publ. Math., iss. 69, pp. 5-45, 1989.
    @article {B1, MRKEY = {1019960},
      AUTHOR = {Bourgain, J.},
      TITLE = {Pointwise ergodic theorems for arithmetic sets},
      NOTE = {with an appendix by the author, Harry Furstenberg, Yitzhak Katznelson and Donald S. Ornstein},
      JOURNAL = {Inst. Hautes Études Sci. Publ. Math.},
      FJOURNAL = {Institut des Hautes Études Scientifiques. Publications Mathématiques},
      NUMBER = {69},
      YEAR = {1989},
      PAGES = {5--45},
      ISSN = {0073-8301},
      CODEN = {PMIHA6},
      MRCLASS = {28D05 (11B83 11K99 11L03 47A35)},
      MRNUMBER = {90k:28030},
      MRREVIEWER = {F. Schweiger},
      URL = {http://www.numdam.org/item?id=PMIHES_1989__69__5_0},
      ZBLNUMBER = {0705.28008},
      }
  • [B2] J. Bourgain, "An approach to pointwise ergodic theorems," in Geometric Aspects of Functional Analysis (1986/87), New York: Springer-Verlag, 1988, pp. 204-223.
    @incollection {B2, MRKEY = {950982},
      AUTHOR = {Bourgain, J.},
      TITLE = {An approach to pointwise ergodic theorems},
      BOOKTITLE = {Geometric Aspects of Functional Analysis (1986/87)},
      SERIES = {Lecture Notes in Math.},
      NUMBER = {1317},
      PAGES = {204--223},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {1988},
      MRCLASS = {28D05 (11L40 11P55 42B25 47A35)},
      MRNUMBER = {90b:28016},
      MRREVIEWER = {V. Losert},
      ZBLNUMBER = {0662.47006},
      }
  • [B3] Go to document J. Bourgain, "On the pointwise ergodic theorem on $L^p$ for arithmetic sets," Israel J. Math., vol. 61, iss. 1, pp. 73-84, 1988.
    @article {B3, MRKEY = {937582},
      AUTHOR = {Bourgain, J.},
      TITLE = {On the pointwise ergodic theorem on {$L\sp p$} for arithmetic sets},
      JOURNAL = {Israel J. Math.},
      FJOURNAL = {Israel Journal of Mathematics},
      VOLUME = {61},
      YEAR = {1988},
      NUMBER = {1},
      PAGES = {73--84},
      ISSN = {0021-2172},
      CODEN = {ISJMAP},
      MRCLASS = {28D05},
      MRNUMBER = {89f:28037b},
      MRREVIEWER = {Alberto de la Torre},
      DOI = {10.1007/BF02776302},
      ZBLNUMBER = {0642.28011},
      }
  • [B4] Go to document J. Bourgain, "On the maximal ergodic theorem for certain subsets of the integers," Israel J. Math., vol. 61, iss. 1, pp. 39-72, 1988.
    @article {B4, MRKEY = {937581},
      AUTHOR = {Bourgain, J.},
      TITLE = {On the maximal ergodic theorem for certain subsets of the integers},
      JOURNAL = {Israel J. Math.},
      FJOURNAL = {Israel Journal of Mathematics},
      VOLUME = {61},
      YEAR = {1988},
      NUMBER = {1},
      PAGES = {39--72},
      ISSN = {0021-2172},
      CODEN = {ISJMAP},
      MRCLASS = {28D05},
      MRNUMBER = {89f:28037a},
      MRREVIEWER = {Alberto de la Torre},
      DOI = {10.1007/BF02776301},
      ZBLNUMBER = {0642.28010},
      }
  • [B5] J. Bourgain, "Almost sure convergence in ergodic theory," in Almost Everywhere Convergence, Boston, MA: Academic Press, 1989, pp. 145-151.
    @incollection {B5, MRKEY = {1035242},
      AUTHOR = {Bourgain, J.},
      TITLE = {Almost sure convergence in ergodic theory},
      BOOKTITLE = {Almost Everywhere Convergence},
      VENUE={{C}olumbus, {OH},
      1988},
      PAGES = {145--151},
      PUBLISHER = {Academic Press},
      ADDRESS = {Boston, MA},
      YEAR = {1989},
      MRCLASS = {47A35 (28D05)},
      MRNUMBER = {90k:47017},
      ZBLNUMBER = {0697.47005},
      }
  • [BM] Z. Buczolich and R. D. Mauldin, "Concepts behind divergent ergodic averages along the squares," in Ergodic Theory and Related Fields, Providence, RI: A.M.S., 2007, vol. 430, pp. 41-56.
    @incollection{BM,
      author={Buczolich, Z. and Mauldin, R. D.},
      title={Concepts behind divergent ergodic averages along the squares},
      BOOKTITLE={Ergodic Theory and Related Fields},
      JOURNAL={Contemp. Math.},
      PUBLISHER={A.M.S.},
      ADDRESS={Providence, RI},
      VOLUME={430},
      YEAR={2007},
      PAGES={41--56},
      ZBLNUMBER={1122.37003},
      MRNUMBER={2009c:37001},
      }
  • [[con]] J. Conze, "Convergence des moyennes ergodiques pour des sous-suites," in Contributions au Calcul des Probabilités, Paris: Soc. Math. France, 1973, vol. 35, pp. 7-15.
    @incollection {[con], MRKEY = {0453975},
      AUTHOR = {Conze, Jean-Pierre},
      TITLE = {Convergence des moyennes ergodiques pour des sous-suites},
      BOOKTITLE = {Contributions au Calcul des Probabilités},
      PAGES = {7--15},
      SERIES={Bull. Soc. Math. France, Mém.},
      VOLUME={35},
      PUBLISHER = {Soc. Math. France},
      ADDRESS = {Paris},
      YEAR = {1973},
      MRCLASS = {28A65},
      MRNUMBER = {56 \#12226},
      MRREVIEWER = {Manfred Denker},
      ZBLNUMBER = {0285.28017},
      }
  • [FU] H. Furstenberg, Problem session.
    @misc{FU,
      author={Furstenberg, H.},
      title={Problem session},
      note={{\it Conference on Ergodic Theory and Applications,} University of New Hampshire, Durham, NH, June 1982},
      }
  • [[gar]] A. M. Garsia, Topics in Almost Everywhere Convergence, Markham Publishing Co., Chicago, Ill., 1970.
    @book {[gar], MRKEY = {0261253},
      AUTHOR = {Garsia, Adriano M.},
      TITLE = {Topics in Almost Everywhere Convergence},
      SERIES = {Lectures in Advanced Mathematics},
      NUMBER = {4},
      PUBLISHER = {Markham Publishing Co., Chicago, Ill.},
      YEAR = {1970},
      PAGES = {x+154},
      MRCLASS = {42.16 (28.00)},
      MRNUMBER = {41 \#5869},
      MRREVIEWER = {R. A. Hunt},
      ZBLNUMBER = {0198.38401},
      }
  • [HW] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., New York: The Clarendon Press, Oxford Univ. Press, 1979.
    @book {HW, MRKEY = {568909},
      AUTHOR = {Hardy, G. H. and Wright, E. M.},
      TITLE = {An Introduction to the Theory of Numbers},
      EDITION = {Fifth},
      PUBLISHER = {The Clarendon Press, Oxford Univ. Press},
      ADDRESS = {New York},
      YEAR = {1979},
      PAGES = {xvi+426},
      ISBN = {0-19-853170-2; 0-19-853171-0},
      MRCLASS = {10-01},
      MRNUMBER = {81i:10002},
      MRREVIEWER = {T. M. Apostol},
      ZBLNUMBER = {0423.10001},
      }
  • [IK] H. Iwaniec and E. Kowalski, Analytic Number Theory, Providence, RI: Amer. Math. Soc., 2004, vol. 53.
    @book{IK,
      author={Iwaniec, H. and Kowalski, E.},
      TITLE={Analytic Number Theory},
      SERIES={A.M.S. Colloq. Publ.},
      VOLUME={53},
      PUBLISHER={Amer. Math. Soc.},
      ADDRESS={Providence, RI},
      YEAR={2004},
      MRNUMBER={2005h:11005},
      ZBLNUMBER={1059.11001},
      }
  • [[Kur]] Go to document Pär. Kurlberg and Z. Rudnick, "The distribution of spacings between quadratic residues," Duke Math. J., vol. 100, iss. 2, pp. 211-242, 1999.
    @article {[Kur], MRKEY = {1722952},
      AUTHOR = {Kurlberg, P{ä}r and Rudnick, Ze{é}v},
      TITLE = {The distribution of spacings between quadratic residues},
      JOURNAL = {Duke Math. J.},
      FJOURNAL = {Duke Mathematical Journal},
      VOLUME = {100},
      YEAR = {1999},
      NUMBER = {2},
      PAGES = {211--242},
      ISSN = {0012-7094},
      CODEN = {DUMJAO},
      MRCLASS = {11N69 (11K36)},
      MRNUMBER = {2000k:11109},
      MRREVIEWER = {D. R. Heath-Brown},
      DOI = {10.1215/S0012-7094-99-10008-1},
      ZBLNUMBER = {0985.11038},
      }
  • [[Kur2]] Pär. Kurlberg, "The distribution of spacings between quadratic residues. II," Israel J. Math., vol. 120, iss. , part A, pp. 205-224, 2000.
    @article {[Kur2], MRKEY = {1815376},
      AUTHOR = {Kurlberg, P{ä}r},
      TITLE = {The distribution of spacings between quadratic residues. {II}},
      JOURNAL = {Israel J. Math.},
      FJOURNAL = {Israel Journal of Mathematics},
      VOLUME = {120},
      YEAR = {2000},
      NUMBER = {, part A},
      PAGES = {205--224},
      ISSN = {0021-2172},
      CODEN = {ISJMAP},
      MRCLASS = {11N69 (11K36)},
      MRNUMBER = {2001m:11163},
      MRREVIEWER = {D. R. Heath-Brown},
      ZBLNUMBER = {1026.11074},
      }
  • [[L]] J. Lamperti, Probability. A Survey of the Mathematical Theory, New York: W. A. Benjamin, 1966.
    @book {[L], MRKEY = {0206996},
      AUTHOR = {Lamperti, John},
      TITLE = {Probability. {A} Survey of the Mathematical Theory},
      PUBLISHER = {W. A. Benjamin},
      ADDRESS={New York},
      YEAR = {1966},
      PAGES = {x+150},
      MRCLASS = {60.00},
      MRNUMBER = {34 \#6812},
      MRREVIEWER = {H. P. McKean, Jr.},
      ZBLNUMBER = {0147.15502},
      }
  • [NZ] I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers, Third ed., New York: John Wiley\thinspace &\thinspace Sons, 1972.
    @book {NZ, MRKEY = {0344181},
      AUTHOR = {Niven, Ivan and Zuckerman, Herbert S.},
      TITLE = {An Introduction to the Theory of Numbers},
      EDITION = {Third},
      PUBLISHER = {John Wiley\thinspace \&\thinspace Sons},
      ADDRESS={New York},
      YEAR = {1972},
      PAGES = {xii+288},
      MRCLASS = {10-01 (12-01)},
      MRNUMBER = {49 \#8921},
      ZBLNUMBER = {0237.10001},
      }
  • [[Per]] Go to document R. Peralta, "On the distribution of quadratic residues and nonresidues modulo a prime number," Math. Comp., vol. 58, iss. 197, pp. 433-440, 1992.
    @article {[Per], MRKEY = {1106978},
      AUTHOR = {Peralta, Ren{é}},
      TITLE = {On the distribution of quadratic residues and nonresidues modulo a prime number},
      JOURNAL = {Math. Comp.},
      FJOURNAL = {Mathematics of Computation},
      VOLUME = {58},
      YEAR = {1992},
      NUMBER = {197},
      PAGES = {433--440},
      ISSN = {0025-5718},
      CODEN = {MCMPAF},
      MRCLASS = {11Y16 (11A15)},
      MRNUMBER = {93c:11115},
      MRREVIEWER = {Eric Bach},
      DOI = {10.2307/2153045},
      ZBLNUMBER = {0745.11057},
      }
  • [[RW]] J. M. Rosenblatt and Máté. Wierdl, "Pointwise ergodic theorems via harmonic analysis," in Ergodic Theory and its Connections with Harmonic Analysis, Cambridge: Cambridge Univ. Press, 1995, pp. 3-151.
    @incollection {[RW], MRKEY = {1325697},
      AUTHOR = {Rosenblatt, Joseph M. and Wierdl, M{á}t{é}},
      TITLE = {Pointwise ergodic theorems via harmonic analysis},
      BOOKTITLE = {Ergodic Theory and its Connections with Harmonic Analysis},
      VENUE={{A}lexandria, 1993},
      SERIES = {London Math. Soc. Lecture Note Ser.},
      NUMBER = {205},
      PAGES = {3--151},
      PUBLISHER = {Cambridge Univ. Press},
      ADDRESS = {Cambridge},
      YEAR = {1995},
      MRCLASS = {28D05 (47A35)},
      MRNUMBER = {96c:28025},
      MRREVIEWER = {Richard D. Duncan},
      ZBLNUMBER = {0848.28008},
      }
  • [[saw]] Go to document S. Sawyer, "Maximal inequalities of weak type," Ann. of Math., vol. 84, pp. 157-174, 1966.
    @article {[saw], MRKEY = {0209867},
      AUTHOR = {Sawyer, S.},
      TITLE = {Maximal inequalities of weak type},
      JOURNAL = {Ann. of Math.},
      FJOURNAL = {Annals of Mathematics. Second Series},
      VOLUME = {84},
      YEAR = {1966},
      PAGES = {157--174},
      ISSN = {0003-486X},
      MRCLASS = {47.25 (28.00)},
      MRNUMBER = {35 \#763},
      MRREVIEWER = {R. A. Hirschfeld},
      DOI = {10.2307/1970516},
      ZBLNUMBER = {0186.20503},
      }
  • [[st]] Go to document E. M. Stein, "On limits of seqences of operators," Ann. of Math., vol. 74, pp. 140-170, 1961.
    @article {[st], MRKEY = {0125392},
      AUTHOR = {Stein, E. M.},
      TITLE = {On limits of seqences of operators},
      JOURNAL = {Ann. of Math.},
      FJOURNAL = {Annals of Mathematics. Second Series},
      VOLUME = {74},
      YEAR = {1961},
      PAGES = {140--170},
      ISSN = {0003-486X},
      MRCLASS = {42.11},
      MRNUMBER = {23 \#A2695},
      MRREVIEWER = {R. P. Boas, Jr.},
      DOI = {10.2307/1970308},
      }

Authors

Zoltán Buczolich

Department of Analysis, Eötvös Loránd
University, Pázmány Péter Sétány 1/c, 1117 Budapest, Hungary

R. Daniel Mauldin

University of North Texas
Department of Mathematics
Denton 76203-1430
United States