Localization of $\mathfrak g$-modules on the affine Grassmannian

Abstract

We consider the category of modules over the affine Kac-Moody algebra $\widehat{\mathfrak g}$ of critical level with regular central character. In our previous paper we conjectured that this category is equivalent to the category of Hecke eigen-D-modules on the affine Grassmannian $G(\!(t)\!)/G[\mskip-2mu[t]\mskip-2mu]$. This conjecture was motivated by our proposal for a local geometric Langlands correspondence. In this paper we prove this conjecture for the corresponding $I^0$ equivariant categories, where $I^0$ is the radical of the Iwahori subgroup of $G(\!(t)\!)$. Our result may be viewed as an affine analogue of the equivalence of categories of ${\mathfrak g}$-modules and D-modules on the flag variety $G/B$, due to Beilinson-Bernstein and Brylinski-Kashiwara.

  • [AG] Go to document S. Arkhipov and D. Gaitsgory, "Another realization of the category of modules over the small quantum group," Adv. Math., vol. 173, iss. 1, pp. 114-143, 2003.
    @article {AG, MRKEY = {1954457},
      AUTHOR = {Arkhipov, Sergey and Gaitsgory, Dennis},
      TITLE = {Another realization of the category of modules over the small quantum group},
      JOURNAL = {Adv. Math.},
      FJOURNAL = {Advances in Mathematics},
      VOLUME = {173},
      YEAR = {2003},
      NUMBER = {1},
      PAGES = {114--143},
      ISSN = {0001-8708},
      CODEN = {ADMTA4},
      MRCLASS = {17B37 (17B67)},
      MRNUMBER = {2004e:17010},
      MRREVIEWER = {H. H. Andersen},
      DOI = {10.1016/S0001-8708(02)00016-6},
      ZBLNUMBER = {1025.17004},
      }
  • [ABBGM] Go to document S. Arkhipov, A. Braverman, R. Bezrukavnikov, D. Gaitsgory, and I. Mirk-ović, "Modules over the small quantum group and semi-infinite flag manifold," Transform. Groups, vol. 10, iss. 3-4, pp. 279-362, 2005.
    @article {ABBGM, MRKEY = {2183116},
      AUTHOR = {Arkhipov, S. and Braverman, A. and Bezrukavnikov, R. and Gaitsgory, D. and Mirkovi{ć},
      I.},
      TITLE = {Modules over the small quantum group and semi-infinite flag manifold},
      JOURNAL = {Transform. Groups},
      FJOURNAL = {Transformation Groups},
      VOLUME = {10},
      YEAR = {2005},
      NUMBER = {3-4},
      PAGES = {279--362},
      ISSN = {1083-4362},
      MRCLASS = {14F05 (14M15 17B37)},
      MRNUMBER = {2008a:14027},
      DOI = {10.1007/s00031-005-0401-5},
      ZBLNUMBER = {1122.17007},
      }
  • [ABG] Go to document S. Arkhipov, R. Bezrukavnikov, and V. Ginzburg, "Quantum groups, the loop Grassmannian, and the Springer resolution," J. Amer. Math. Soc., vol. 17, iss. 3, pp. 595-678, 2004.
    @article {ABG, MRKEY = {2053952},
      AUTHOR = {Arkhipov, Sergey and Bezrukavnikov, Roman and Ginzburg, Victor},
      TITLE = {Quantum groups, the loop {G}rassmannian, and the {S}pringer resolution},
      JOURNAL = {J. Amer. Math. Soc.},
      FJOURNAL = {Journal of the American Mathematical Society},
      VOLUME = {17},
      YEAR = {2004},
      NUMBER = {3},
      PAGES = {595--678},
      ISSN = {0894-0347},
      MRCLASS = {16S38 (14A22)},
      MRNUMBER = {2005g:16055},
      MRREVIEWER = {Arvid Siqveland},
      DOI = {10.1090/S0894-0347-04-00454-0},
      ZBLNUMBER = {1061.17013},
      }
  • [Bei] A. Beilinson, "Langlands parameters for Heisenberg modules," in Studies in Lie theory, Boston, MA: Birkhäuser, 2006, pp. 51-60.
    @incollection {Bei, MRKEY = {2214245},
      AUTHOR = {Beilinson, A.},
      TITLE = {Langlands parameters for {H}eisenberg modules},
      BOOKTITLE = {Studies in {L}ie theory},
      SERIES = {Progr. Math.},
      NUMBER = {243},
      PAGES = {51--60},
      PUBLISHER = {Birkhäuser},
      ADDRESS = {Boston, MA},
      YEAR = {2006},
      MRCLASS = {17B69 (14A20)},
      MRNUMBER = {2007g:17027},
      MRREVIEWER = {Pavel S. Kolesnikov},
      ZBLNUMBER = {05037176},
      }
  • [BB] A. Beuilinson and J. Bernstein, "Localisation de $g$-modules," C. R. Acad. Sci. Paris Sér. I Math., vol. 292, iss. 1, pp. 15-18, 1981.
    @article {BB, MRKEY = {610137},
      AUTHOR = {Be{\u\i}linson, Alexandre and Bernstein, Joseph},
      TITLE = {Localisation de {$g$}-modules},
      JOURNAL = {C. R. Acad. Sci. Paris Sér. {\rm I} Math.},
      FJOURNAL = {Comptes Rendus des Séances de l'Académie des Sciences. Série I. Mathématique},
      VOLUME = {292},
      YEAR = {1981},
      NUMBER = {1},
      PAGES = {15--18},
      ISSN = {0151-0509},
      CODEN = {CRSMDY},
      MRCLASS = {14F05 (17B35 20G05)},
      MRNUMBER = {82k:14015},
      MRREVIEWER = {Floyd L. Williams},
      ZBLNUMBER = {0476.14019},
      }
  • [BK] Go to document J. -L. Brylinski and M. Kashiwara, "Kazhdan-Lusztig conjecture and holonomic systems," Invent. Math., vol. 64, iss. 3, pp. 387-410, 1981.
    @article {BK, MRKEY = {632980},
      AUTHOR = {Brylinski, J.-L. and Kashiwara, M.},
      TITLE = {Kazhdan-{L}usztig conjecture and holonomic systems},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {64},
      YEAR = {1981},
      NUMBER = {3},
      PAGES = {387--410},
      ISSN = {0020-9910},
      CODEN = {INVMBH},
      MRCLASS = {22E47 (17B10 20G05)},
      MRNUMBER = {83e:22020},
      MRREVIEWER = {H. H. Andersen},
      DOI = {10.1007/BF01389272},
      ZBLNUMBER = {0473.22009},
      }
  • [BD] Go to document A. Beilinson and V. Drinfeld, Quantization of Hitchin’s integrable system and Hecke eigensheaves.
    @misc{BD,
      author={Beilinson, A. and Drinfeld, V.},
      TITLE={Quantization of Hitchin's integrable system and Hecke eigensheaves},
      URL={http://www.math.uchicago.edu/~mitya/langlands/hitchin/BD-hitchin.pdf},
      }
  • [DGK] Go to document V. V. Deodhar, O. Gabber, and V. Kac, "Structure of some categories of representations of infinite-dimensional Lie algebras," Adv. in Math., vol. 45, iss. 1, pp. 92-116, 1982.
    @article {DGK, MRKEY = {663417},
      AUTHOR = {Deodhar, Vinay V. and Gabber, Ofer and Kac, Victor},
      TITLE = {Structure of some categories of representations of infinite-dimensional {L}ie algebras},
      JOURNAL = {Adv. in Math.},
      FJOURNAL = {Advances in Mathematics},
      VOLUME = {45},
      YEAR = {1982},
      NUMBER = {1},
      PAGES = {92--116},
      ISSN = {0001-8708},
      CODEN = {ADMTA4},
      MRCLASS = {17B65 (17B10)},
      MRNUMBER = {83i:17012},
      MRREVIEWER = {Klaus Pommerening},
      DOI = {10.1016/S0001-8708(82)80014-5},
      ZBLNUMBER = {0491.17008},
      }
  • [FF] B. Feigin and E. Frenkel, "Affine Kac-Moody algebras at the critical level and Gel’fand-Dikiĭalgebras," in Infinite analysis, Part A, B (Kyoto, 1991), World Sci. Publ., River Edge, NJ, 1992, pp. 197-215.
    @incollection {FF, MRKEY = {1187549},
      AUTHOR = {Feigin, Boris and Frenkel, Edward},
      TITLE = {Affine {K}ac-{M}oody algebras at the critical level and \hbox{{G}el'fand}-{D}ikiĭalgebras},
      BOOKTITLE = {Infinite analysis, {P}art {\rm A},
      {\rm B} ({K}yoto, 1991)},
      SERIES = {Adv. Ser. Math. Phys.},
      NUMBER = {16},
      PAGES = {197--215},
      PUBLISHER = {World Sci. Publ., River Edge, NJ},
      YEAR = {1992},
      MRCLASS = {17B67 (81R10)},
      MRNUMBER = {93j:17049},
      MRREVIEWER = {A. Hamid Bougourzi},
      }
  • [F:wak] Go to document E. Frenkel, "Wakimoto modules, opers and the center at the critical level," Adv. Math., vol. 195, iss. 2, pp. 297-404, 2005.
    @article {F:wak, MRKEY = {2146349},
      AUTHOR = {Frenkel, Edward},
      TITLE = {Wakimoto modules, opers and the center at the critical level},
      JOURNAL = {Adv. Math.},
      FJOURNAL = {Advances in Mathematics},
      VOLUME = {195},
      YEAR = {2005},
      NUMBER = {2},
      PAGES = {297--404},
      ISSN = {0001-8708},
      CODEN = {ADMTA4},
      MRCLASS = {17B69 (17B10 17B67)},
      MRNUMBER = {2006d:17018},
      MRREVIEWER = {Dra{ž}en Adamovi{ć}},
      DOI = {10.1016/j.aim.2004.08.002},
      ZBLNUMBER = {1129.17014},
      }
  • [FG1] Go to document E. Frenkel and D. Gaitsgory, "$D$-modules on the affine Grassmannian and representations of affine Kac-Moody algebras," Duke Math. J., vol. 125, iss. 2, pp. 279-327, 2004.
    @article {FG1, MRKEY = {2096675},
      AUTHOR = {Frenkel, Edward and Gaitsgory, Dennis},
      TITLE = {{$D$}-modules on the affine {G}rassmannian and representations of affine {K}ac-{M}oody algebras},
      JOURNAL = {Duke Math. J.},
      FJOURNAL = {Duke Mathematical Journal},
      VOLUME = {125},
      YEAR = {2004},
      NUMBER = {2},
      PAGES = {279--327},
      ISSN = {0012-7094},
      CODEN = {DUMJAO},
      MRCLASS = {17B67},
      MRNUMBER = {2005h:17040},
      MRREVIEWER = {Stefano Capparelli},
      DOI = {10.1215/S0012-7094-04-12524-2},
      ZBLNUMBER = {1107.17013},
      }
  • [FG2] E. Frenkel and D. Gaitsgory, "Local geometric Langlands correspondence and affine Kac-Moody algebras," in Algebraic geometry and number theory, Boston, MA: Birkhäuser, 2006, pp. 69-260.
    @incollection {FG2, MRKEY = {2263193},
      AUTHOR = {Frenkel, Edward and Gaitsgory, Dennis},
      TITLE = {Local geometric {L}anglands correspondence and affine {K}ac-{M}oody algebras},
      BOOKTITLE = {Algebraic geometry and number theory},
      SERIES = {Progr. Math.},
      NUMBER = {253},
      PAGES = {69--260},
      PUBLISHER = {Birkhäuser},
      ADDRESS = {Boston, MA},
      YEAR = {2006},
      MRCLASS = {17B67 (11G45 11R39 14D20)},
      MRNUMBER = {2008e:17023},
      MRREVIEWER = {Peter Fiebig},
      ZBLNUMBER = {05234056},
      }
  • [Ga] D. Gaitsgory, The notion of category over an algebraic stack, preprint.
    @misc{Ga,
      author={Gaitsgory, Dennis},
      TITLE={The notion of category over an algebraic stack, preprint},
      ARXIV={math.AG/0507192},
      }
  • [KL1] D. Kazhdan and G. Lusztig, "Tensor structures arising from affine Lie algebras. I, II," J. Amer. Math. Soc.\/, vol. 6, pp. 905-947; 949, 1993.
    @article{KL1,
      author={Kazhdan, David and Lusztig, G.},
      TITLE={Tensor structures arising from affine Lie algebras. {\rm I, II}},
      JOURNAL={J. Amer. Math. Soc.\/},
      VOLUME={6},
      YEAR={1993},
      PAGES={905--947; 949--1011},
      MRNUMBER = {93m:17014},
      ZBLNUMBER={0786.17017},
      }
  • [KL2] D. Kazhdan and G. Lusztig, "Tensor structures arising from affine Lie algebras. III, IV," J. Amer. Math. Soc.\/, vol. 7, pp. 335-381; 383, 1994.
    @article{KL2,
      author={Kazhdan, David and Lusztig, G.},
      TITLE={Tensor structures arising from affine Lie algebras. {\rm III, IV}},
      JOURNAL={J. Amer. Math. Soc.\/},
      VOLUME={7},
      YEAR={1994},
      PAGES={335--381; 383--453},
      MRNUMBER = {94g:17049},
      ZBLNUMBER={0802.17007},
      }
  • [MV] I. Mirković and K. Vilonen, "Geometric Langlands duality and representations of algebraic groups over commutative rings," Ann. of Math., vol. 166, pp. 95-143, 2007.
    @article{MV,
      author={Mirković, I. and Vilonen, Kari},
      TITLE={Geometric Langlands duality and representations of algebraic groups over commutative rings},
      JOURNAL={Ann. of Math.},
      VOLUME={166},
      YEAR={2007},
      PAGES={95--143},
      MRNUMBER = {2342692},
      ZBLNUMBER={1138.22013},
      }
  • [KT] Go to document M. Kashiwara and T. Tanisaki, "Kazhdan-Lusztig conjecture for affine Lie algebras with negative level," Duke Math. J., vol. 77, iss. 1, pp. 21-62, 1995.
    @article {KT, MRKEY = {1317626},
      AUTHOR = {Kashiwara, Masaki and Tanisaki, Toshiyuki},
      TITLE = {Kazhdan-{L}usztig conjecture for affine {L}ie algebras with negative level},
      JOURNAL = {Duke Math. J.},
      FJOURNAL = {Duke Mathematical Journal},
      VOLUME = {77},
      YEAR = {1995},
      NUMBER = {1},
      PAGES = {21--62},
      ISSN = {0012-7094},
      CODEN = {DUMJAO},
      MRCLASS = {17B67 (17B10)},
      MRNUMBER = {96j:17016},
      MRREVIEWER = {Alex Jay Feingold},
      DOI = {10.1215/S0012-7094-95-07702-3},
      ZBLNUMBER = {0829.17020},
      }

Authors

Edward Frenkel

Department of Mathematics
University of California, Berkeley
970 Evans Hall #3840
Berkeley, CA 94720-3840
United States

Dennis Gaitsgory

Department of Mathematics
Harvard University
One Oxford Street
Cambridge, MA 02138
United States