Subharmonic solutions of Hamiltonian equations on tori

Abstract

Let the torus $ T^{2n}$ be equipped with the standard symplectic structure and a periodic Hamiltonian $\mathcal{H} \in C^{3}(S^{1}\times T^{2n}, \mathbb{R})$. We look for periodic orbits of the Hamiltonian flow $ \dot{\boldsymbol{u}}(t)=J\nabla\mathcal{H} (t,\boldsymbol(t)). $ A subharmonic solution is a periodic orbit with minimal period an integral multiple $ m $ of the period of $\mathcal{H} $, with $ m>1 $.

We prove that if the Hamiltonian flow has only finitely many orbits with the same period as $\mathcal{H}$, then there are subharmonic solutions with arbitrarily high minimal period. Thus there are always infinitely many distinct periodic orbits.

The results proved here were proved in the nondegenerate case by Conley and Zehnder and in the case $ n=1 $ by Le Calvez.

  • [A-Z] Go to document H. Amann and E. Zehnder, "Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations," Ann. Scuola Norm. Sup. Pisa Cl. Sci., vol. 7, iss. 4, pp. 539-603, 1980.
    @article {A-Z, MRKEY = {600524},
      AUTHOR = {Amann, H. and Zehnder, E.},
      TITLE = {Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations},
      JOURNAL = {Ann. Scuola Norm. Sup. Pisa Cl. Sci.},
      FJOURNAL = {Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV},
      VOLUME = {7},
      YEAR = {1980},
      NUMBER = {4},
      PAGES = {539--603},
      CODEN = {PSNAAI},
      MRCLASS = {47H15 (34G20 35P99 58E05 58E07)},
      MRNUMBER = {82b:47077},
      MRREVIEWER = {Simeon Reich},
      URL = {http://www.numdam.org/item?id=ASNSP_1980_4_7_4_539_0},
      ZBLNUMBER = {0452.47077},
      }
  • [Ba] Go to document V. Bangert, "Closed geodesics on complete surfaces," Math. Ann., vol. 251, iss. 1, pp. 83-96, 1980.
    @article {Ba, MRKEY = {583827},
      AUTHOR = {Bangert, Victor},
      TITLE = {Closed geodesics on complete surfaces},
      JOURNAL = {Math. Ann.},
      FJOURNAL = {Mathematische Annalen},
      VOLUME = {251},
      YEAR = {1980},
      NUMBER = {1},
      PAGES = {83--96},
      ISSN = {0025-5831},
      CODEN = {MAANA3},
      MRCLASS = {58E10 (53C22)},
      MRNUMBER = {81k:58027},
      MRREVIEWER = {Midori Goto},
      DOI = {10.1007/BF01420283},
      ZBLNUMBER = {0422.53024},
      }
  • [B] Go to document R. Bott, "On the iteration of closed geodesics and the Sturm intersection theory," Comm. Pure Appl. Math., vol. 9, pp. 171-206, 1956.
    @article {B, MRKEY = {0090730},
      AUTHOR = {Bott, Raoul},
      TITLE = {On the iteration of closed geodesics and the {S}turm intersection theory},
      JOURNAL = {Comm. Pure Appl. Math.},
      FJOURNAL = {Communications on Pure and Applied Mathematics},
      VOLUME = {9},
      YEAR = {1956},
      PAGES = {171--206},
      ISSN = {0010-3640},
      MRCLASS = {34.0X},
      MRNUMBER = {19,859f},
      MRREVIEWER = {H. Samelson},
      DOI = {10.1002/cpa.3160090204},
      ZBLNUMBER = {0074.17202},
      }
  • [C] K. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Boston, MA: Birkhäuser, 1993.
    @book {C, MRKEY = {1196690},
      AUTHOR = {Chang, Kung-ching},
      TITLE = {Infinite Dimensional {M}orse Theory and Multiple Solution Problems},
      series={Progress in Nonlinear Differential Equations and their Applications},
      number={6},
      PUBLISHER = {Birkhäuser},
      ADDRESS = {Boston, MA},
      YEAR = {1993},
      PAGES = {x+312},
      ISBN = {0-8176-3451-7},
      MRCLASS = {58E05 (34C25 35A15 35J60 49-02 58-02 58E20)},
      MRNUMBER = {94e:58023},
      MRREVIEWER = {Wojciech Kryszewski},
      ZBLNUMBER = {0779.58005},
      }
  • [C-Z1] Go to document C. Conley and E. Zehnder, "The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnol\cprime d," Invent. Math., vol. 73, iss. 1, pp. 33-49, 1983.
    @article {C-Z1, MRKEY = {707347},
      AUTHOR = {Conley, C. and Zehnder, E.},
      TITLE = {The {B}irkhoff-{L}ewis fixed point theorem and a conjecture of {V}. {I}. {A}rnol\cprime d},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {73},
      YEAR = {1983},
      NUMBER = {1},
      PAGES = {33--49},
      ISSN = {0020-9910},
      CODEN = {INVMBH},
      MRCLASS = {58F05 (58C30)},
      MRNUMBER = {85e:58044},
      MRREVIEWER = {Yu. E. Gliklikh},
      DOI = {10.1007/BF01393824},
      }
  • [C-Z2] Go to document C. Conley and E. Zehnder, "Subharmonic solutions and Morse theory," Phys. A, vol. 124, iss. 1-3, pp. 649-658, 1984.
    @article {C-Z2, MRKEY = {759212},
      AUTHOR = {Conley, C. and Zehnder, E.},
      TITLE = {Subharmonic solutions and {M}orse theory},
      JOURNAL = {Phys. A},
      FJOURNAL = {Physica A. Statistical and Theoretical Physics},
      VOLUME = {124},
      YEAR = {1984},
      NUMBER = {1-3},
      PAGES = {649--658},
      ISSN = {0378-4371},
      CODEN = {PHYSAG},
      MRCLASS = {58E05 (58F05)},
      MRNUMBER = {86b:58020},
      MRREVIEWER = {A. Vanderbauwhede},
      DOI = {10.1016/0378-4371(84)90282-6},
      ZBLNUMBER = {0605.58015},
      }
  • [C-Z3] C. Conley and E. Zehnder, "A global fixed point theorem for symplectic maps and subharmonic solutions of Hamiltonian equations on tori," in Nonlinear Functional Analysis and its Applications, Providence, RI: Amer. Math. Soc., 1986, vol. 1, pp. 283-299.
    @incollection {C-Z3, MRKEY = {843567},
      AUTHOR = {Conley, C. and Zehnder, E.},
      TITLE = {A global fixed point theorem for symplectic maps and subharmonic solutions of {H}amiltonian equations on tori},
      BOOKTITLE = {Nonlinear Functional Analysis and its Applications},
      volume={1},
      SERIES = {Proc. Sympos. Pure Math.},
      NUMBER = {45},
      PAGES = {283--299},
      PUBLISHER = {Amer. Math. Soc.},
      ADDRESS = {Providence, RI},
      YEAR = {1986},
      MRCLASS = {58F05 (34C25 58E05)},
      MRNUMBER = {87m:58053},
      MRREVIEWER = {A. Vanderbauwhede},
      ZBLNUMBER = {0607.58035},
      }
  • [CC] C. Conley, Isolated Invariant Sets and the Morse Index, Providence, R.I.: Amer. Math. Soc., 1978.
    @book {CC, MRKEY = {511133},
      AUTHOR = {Conley, Charles},
      TITLE = {Isolated Invariant Sets and the {M}orse Index},
      SERIES = {CBMS Regional Conference Series in Mathematics},
      NUMBER = {38},
      PUBLISHER = {Amer. Math. Soc.},
      ADDRESS = {Providence, R.I.},
      YEAR = {1978},
      PAGES = {iii+89},
      ISBN = {0-8218-1688-8},
      MRCLASS = {58Fxx (34-02 35-02)},
      MRNUMBER = {80c:58009},
      MRREVIEWER = {J. Smoller},
      ZBLNUMBER = {0397.34056},
      }
  • [F] Go to document A. Floer, "Proof of the Arnol\cprime d conjecture for surfaces and generalizations to certain Kähler manifolds," Duke Math. J., vol. 53, iss. 1, pp. 1-32, 1986.
    @article {F, MRKEY = {835793},
      AUTHOR = {Floer, Andreas},
      TITLE = {Proof of the {A}rnol\cprime d conjecture for surfaces and generalizations to certain {K}ähler manifolds},
      JOURNAL = {Duke Math. J.},
      FJOURNAL = {Duke Mathematical Journal},
      VOLUME = {53},
      YEAR = {1986},
      NUMBER = {1},
      PAGES = {1--32},
      ISSN = {0012-7094},
      CODEN = {DUMJAO},
      MRCLASS = {58F22 (53C55 53C57 58F05)},
      MRNUMBER = {87h:58188},
      MRREVIEWER = {A. Morimoto},
      DOI = {10.1215/S0012-7094-86-05301-9},
      }
  • [G-M] Go to document D. Gromoll and W. Meyer, "On differentiable functions with isolated critical points," Topology, vol. 8, pp. 361-369, 1969.
    @article {G-M, MRKEY = {0246329},
      AUTHOR = {Gromoll, Detlef and Meyer, Wolfgang},
      TITLE = {On differentiable functions with isolated critical points},
      JOURNAL = {Topology},
      FJOURNAL = {Topology. An International Journal of Mathematics},
      VOLUME = {8},
      YEAR = {1969},
      PAGES = {361--369},
      ISSN = {0040-9383},
      MRCLASS = {57.55},
      MRNUMBER = {39 \#7633},
      MRREVIEWER = {M. Klingmann},
      DOI = {10.1016/0040-9383(69)90022-6},
      ZBLNUMBER = {0212.28903},
      }
  • [H1] N. Hingston, Perambulation in the symplectic group, preprint, 1986.
    @misc{H1,
      author = {Hingston, Nancy},
      TITLE ={Perambulation in the symplectic group, preprint},
      YEAR={1986},
      }
  • [H2] Go to document N. Hingston, "On the growth of the number of closed geodesics on the two-sphere," Internat. Math. Res. Notices, iss. 9, pp. 253-262, 1993.
    @article {H2, MRKEY = {1240637},
      AUTHOR = {Hingston, Nancy},
      TITLE = {On the growth of the number of closed geodesics on the two-sphere},
      JOURNAL = {Internat. Math. Res. Notices},
      FJOURNAL = {International Mathematics Research Notices},
      YEAR = {1993},
      NUMBER = {9},
      PAGES = {253--262},
      ISSN = {1073-7928},
      MRCLASS = {58E10},
      MRNUMBER = {94m:58044},
      MRREVIEWER = {Wolfgang Ziller},
      DOI = {10.1155/S1073792893000285},
      ZBLNUMBER = {0809.53053},
      }
  • [H3] Go to document N. Hingston, "On the lengths of closed geodesics on a two-sphere," Proc. Amer. Math. Soc., vol. 125, iss. 10, pp. 3099-3106, 1997.
    @article {H3, MRKEY = {1443831},
      AUTHOR = {Hingston, Nancy},
      TITLE = {On the lengths of closed geodesics on a two-sphere},
      JOURNAL = {Proc. Amer. Math. Soc.},
      FJOURNAL = {Proceedings of the American Mathematical Society},
      VOLUME = {125},
      YEAR = {1997},
      NUMBER = {10},
      PAGES = {3099--3106},
      ISSN = {0002-9939},
      CODEN = {PAMYAR},
      MRCLASS = {58E10 (53C22)},
      MRNUMBER = {98f:58055},
      MRREVIEWER = {Dorin Andrica},
      DOI = {10.1090/S0002-9939-97-04235-4},
      ZBLNUMBER = {0889.58026},
      }
  • [H-Z] H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Basel: Birkhäuser, 1994.
    @book {H-Z, MRKEY = {1306732},
      AUTHOR = {Hofer, Helmut and Zehnder, Eduard},
      TITLE = {Symplectic Invariants and {H}amiltonian Dynamics},
      PUBLISHER = {Birkhäuser},
      ADDRESS = {Basel},
      YEAR = {1994},
      PAGES = {xiv+341},
      ISBN = {3-7643-5066-0},
      MRCLASS = {58-02 (34C25 57R15 58E05 58F05 70H05)},
      MRNUMBER = {96g:58001},
      MRREVIEWER = {Daniel M. Burns, Jr.},
      ZBLNUMBER = {0805.58003},
      }
  • [L1] Y. Long, "Bott formula of the Maslov-type index theory," Pacific J. Math., vol. 187, iss. 1, pp. 113-149, 1999.
    @article {L1, MRKEY = {1674313},
      AUTHOR = {Long, Yiming},
      TITLE = {Bott formula of the {M}aslov-type index theory},
      JOURNAL = {Pacific J. Math.},
      FJOURNAL = {Pacific Journal of Mathematics},
      VOLUME = {187},
      YEAR = {1999},
      NUMBER = {1},
      PAGES = {113--149},
      ISSN = {0030-8730},
      CODEN = {PJMAAI},
      MRCLASS = {37J45 (34C25 53D12 58E05)},
      MRNUMBER = {2000d:37073},
      MRREVIEWER = {James F. Reineck},
      ZBLNUMBER = {0924.58024},
      }
  • [L2] Y. Long, Index Theory for Symplectic Paths with Applications, Basel: Birkhäuser, 2002.
    @book {L2, MRKEY = {1898560},
      AUTHOR = {Long, Yiming},
      TITLE = {Index Theory for Symplectic Paths with Applications},
      SERIES = {Progr. Math.},
      NUMBER = {207},
      PUBLISHER = {Birkhäuser},
      ADDRESS = {Basel},
      YEAR = {2002},
      PAGES = {xxiv+380},
      ISBN = {3-7643-6647-8},
      MRCLASS = {37J45 (34C25 37-02 53D40 58-02 58E05 70H05)},
      MRNUMBER = {2003d:37091},
      MRREVIEWER = {Thomas Bartsch},
      ZBLNUMBER = {1012.37012},
      }
  • [M] M. Morse, The Calculus of Variations in the Large, Providence, RI: Amer. Math. Soc., 1996.
    @book {M, MRKEY = {1451874},
      AUTHOR = {Morse, Marston},
      TITLE = {The Calculus of Variations in the Large},
      SERIES = {American Mathematical Society Colloquium Publications},
      NUMBER = {18},
      PUBLISHER = {Amer. Math. Soc.},
      ADDRESS = {Providence, RI},
      YEAR = {1996},
      PAGES = {xii+368},
      ISBN = {0-8218-1018-9},
      MRCLASS = {58E30 (01A75 49-03 58-03)},
      MRNUMBER = {98f:58070},
      MRREVIEWER = {Caio J. C. Negreiros},
      ZBLNUMBER = {0007.21203},
      }
  • [M-S] D. McDuff and D. Salamon, Introduction to Symplectic Topology, New York: The Clarendon Press Oxford University Press, 1995.
    @book {M-S, MRKEY = {1373431},
      AUTHOR = {McDuff, Dusa and Salamon, Dietmar},
      TITLE = {Introduction to Symplectic Topology},
      SERIES = {Oxford Math. Monographs},
      PUBLISHER = {The Clarendon Press Oxford University Press},
      ADDRESS = {New York},
      YEAR = {1995},
      PAGES = {viii+425},
      ISBN = {0-19-851177-9},
      MRCLASS = {58F05 (53C15 57R57 58E05)},
      MRNUMBER = {97b:58062},
      MRREVIEWER = {Hansj{ö}rg Geiges},
      ZBLNUMBER = {0844.58029},
      }
  • [R] Go to document P. H. Rabinowitz, "On subharmonic solutions of Hamiltonian systems," Comm. Pure Appl. Math., vol. 33, iss. 5, pp. 609-633, 1980.
    @article {R, MRKEY = {586414},
      AUTHOR = {Rabinowitz, Paul H.},
      TITLE = {On subharmonic solutions of {H}amiltonian systems},
      JOURNAL = {Comm. Pure Appl. Math.},
      FJOURNAL = {Communications on Pure and Applied Mathematics},
      VOLUME = {33},
      YEAR = {1980},
      NUMBER = {5},
      PAGES = {609--633},
      ISSN = {0010-3640},
      CODEN = {CPAMAT},
      MRCLASS = {34C25 (49A40 58F05 58F22)},
      MRNUMBER = {81k:34032},
      MRREVIEWER = {Frans Cantrijn},
      DOI = {10.1002/cpa.3160330504},
      ZBLNUMBER = {0425.34024},
      }
  • [S-Z] Go to document D. Salamon and E. Zehnder, "Morse theory for periodic solutions of Hamiltonian systems and the Maslov index," Comm. Pure Appl. Math., vol. 45, iss. 10, pp. 1303-1360, 1992.
    @article {S-Z, MRKEY = {1181727},
      AUTHOR = {Salamon, Dietmar and Zehnder, Eduard},
      TITLE = {Morse theory for periodic solutions of {H}amiltonian systems and the {M}aslov index},
      JOURNAL = {Comm. Pure Appl. Math.},
      FJOURNAL = {Communications on Pure and Applied Mathematics},
      VOLUME = {45},
      YEAR = {1992},
      NUMBER = {10},
      PAGES = {1303--1360},
      ISSN = {0010-3640},
      CODEN = {CPAMA},
      MRCLASS = {58E05 (34C25 58F22 70H05)},
      MRNUMBER = {93g:58028},
      MRREVIEWER = {Yong-Geun Oh},
      DOI = {10.1002/cpa.3160451004},
      ZBLNUMBER = {0766.58023},
      }

Authors

Nancy Hingston

Mathematics and Statistics
Science Complex P231
The College of New Jersey
P.O. Box 7718
Ewing, NJ 08628-0718
United States